文轩九月图书旗舰店店铺主页二维码
文轩九月图书旗舰店
特价好书,就在文轩网!
微信扫描二维码,访问我们的微信店铺

人工智能与大数据基础(成金鑫)

69.00
运费: 免运费
库存: 15 件
人工智能与大数据基础(成金鑫) 商品图0
人工智能与大数据基础(成金鑫) 商品缩略图0

商品详情

人工智能与大数据基础(成金鑫)

作  者:成金鑫 主编;杨文明 等 副主编 编
定  价:69
出 版 社:化学工业出版社
出版日期:2025年12月01日
页  数:310
装  帧:平装
ISBN:9787122476050

目录

导论 人工智能与大数据基础概述 001
0.1 人工智能的基本概念 001
0.1.1 智能 001
0.1.2 人工智能的特征 002
0.2 人工智能的发展简史 004
0.3 人工智能的研究内容 005
0.4 人工智能的三大流派 009
0.4.1 符号主义 009
0.4.2 联结主义 010
0.4.3 行为主义 011
0.5 人工智能的社会学意义 011
第1篇 符号主义人工智能
第1章 知识表示方法 018
1.1 知识表示基本概念 018
1.1.1 知识的基本定义 018
1.1.2 知识的类型 018
1.1.3 知识的重要性 018
1.2 知识的特征 019
1.2.1 可传递性 019
1.2.2 可累积性 019
1.2.3 动态性 019
1.2.4 情境性 019
1.2.5 复杂性 019
1.2.6 不确定性 019
1.3 知识在人工智能中的重要性 020
1.4 知识表示 020
1.4.1 符号表示 020
1.4.2 逻辑表示 021
1.4.3 语义表示 021
1.4.4 比较与分析 021
1.5 命题逻辑及一阶谓词逻辑 022
1.5.1 命题 022
1.5.2 谓词 023
1.5.3 谓词公式 024
1.5.4 谓词公式的性质 025
1.5.5 一阶谓词逻辑知识表示方法 026
1.5.6 一阶谓词逻辑表示法的特点 028
1.6 产生式表示法 030
1.6.1 产生式 030
1.6.2 产生式系统 031
1.6.3 产生式系统—动物识别系统 031
1.6.4 产生式表示法的特点 033
1.7 框架表示法 033
1.7.1 框架表示法的概念 033
1.7.2 框架表示法的起源 034
1.7.3 框架的一般结构 034
1.7.4 用框架表示知识的例子 034
1.7.5 框架表示法的特点 035
1.8 知识图谱 036
1.8.1 知识图谱定义 036
1.8.2 知识图谱的表示 037
1.8.3 知识图谱的架构 038
1.8.4 知识图谱的典型应用 039
第2章 确定性推理方法 041
2.1 推理的基本概念 042
2.1.1 推理的定义 042
2.1.2 推理方式及其分类 042
2.1.3 推理的方向 044
2.1.4 冲突消解策略 047
2.2 自然演绎推理 049
2.3 谓词公式化为子句集方法 050
2.3.1 基本概念 050
2.3.2 子句集化简方法 050
2.4 鲁滨逊归结原理 052
2.4.1 命题逻辑中的归结原理(基子句的归结) 052
2.4.2 谓词逻辑中的归结原理(含有变量的子句的归结) 053
2.5 归结反演 053
2.5.1 归结反演证明步骤 053
2.5.2 归结反演求解问题步骤 054
2.5.3 归结反演的应用与局限性 056
2.6 产生式系统 056
2.6.1 基本概念 056
2.6.2 产生式系统的分类 057
2.6.3 其他产生式系统 058
2.7 非单调推理 059
2.7.1 缺省推理 059
2.7.2 真值维持系统 060
2.7.3 非单调推理的优势与局限性 061
第2篇 行为主义人工智能
第3章 搜索策略 065
3.1 搜索概念 065
3.1.1 状态空间的搜索策略 065
3.1.2 状态空间的图描述 066
3.1.3 八数码问题 067
3.2 盲目搜索策略 067
3.2.1 宽度优先搜索 067
3.2.2 深度优先搜索 068
3.2.3 迭代深化深度优先搜索 069
3.2.4 一致代价搜索 069
3.2.5 回溯策略 070
3.3 启发式搜索策略 070
3.3.1 贪心搜索 072
3.3.2 A*搜索算法 073
3.3.3 蒙特卡罗树搜索算法 076
3.3.4 启发式搜索策略的应用 079
第4章 智能算法及其应用 080
4.1 群智能算法 081
4.1.1 分布式控制 081
4.1.2 自组织现象 082
4.1.3 局部规则与全局行为 084
4.2 粒子群优化算法 085
4.2.1 粒子群优化算法的参数调节 088
4.2.2 粒子群优化算法的应用 089
4.3 蚁群算法 092
4.3.1 蚁群算法基本原理 092
4.3.2 蚁群算法的基本步骤 093
4.3.3 蚁群算法的数学模型 094
4.3.4 蚁群算法的进化与变种 094
4.3.5 蚁群算法的混合与交叉进化 095
4.3.6 蚁群算法在动态环境中的变种 097
4.3.7 蚁群算法应用 098
4.4 进化算法 100
4.4.1 进化算法的三大分支 102
4.4.2 进化算法的应用 103
4.4.3 基本遗传算法 104
4.4.4 遗传算法的改进算法 110
4.4.5 遗传算法的应用 115
4.4.6 其他群智能算法 117
4.5 强化学习 123
4.5.1 马尔可夫决策过程 124
4.5.2 策略 125
4.5.3 价值函数 126
4.5.4 贝尔曼方程 126
4.5.5 经典强化学习算法 127
第3篇 联结主义人工智能
第5章 数据科学基础理论与数据预处理 133
5.1 数据科学概述 133
5.1.1 数据科学基本概念 133
5.1.2 数据计算平台与数据管理 135
5.2 数据质量 136
5.2.1 数据质量的重要性 136
5.2.2 数据质量的评估指标 137
5.3 数据审计 138
5.3.1 数据审计的目的与意义 138
5.3.2 数据审计的方法 138
5.4 数据清洗 140
5.4.1 缺失值处理 140
5.4.2 冗余数据清洗 143
5.4.3 异常值检测与处理 143
5.5 数据变换 145
5.5.1 数值缩放 145
5.5.2 数据离散化 146
5.5.3 数据降维 147
5.5.4 数据分布变换 149
5.5.5 特征构造与交互项生成 150
5.6 数据集成 152
5.6.1 数据集成的核心概念 152
5.6.2 常用的数据集成方法 153
第6章 数据统计 157
6.1 概率分布 157
6.1.1 离散型分布 157
6.1.2 连续型分布 159
6.2 参数估计 162
6.2.1 点估计 162
6.2.2 区间估计 165
第7章 机器学习 167
7.1 机器学习概述 167
7.1.1 什么是机器学习 167
7.1.2 发展历程 168
7.1.3 基本概念 170
7.1.4 模型评估与评估指标 173
7.2 机器学习算法 174
7.2.1 监督学习 175
7.2.2 无监督学习 178
7.2.3 半监督学习 182
7.3 机器学习策略及典型算法 184
7.3.1 分类 184
7.3.2 回归 187
7.3.3 聚类 190
7.3.4 降维 192
第8章 深度学习 196
8.1 深度学习发展概述 196
8.2 深度学习基本概念 199
8.2.1 数据相关概念 199
8.2.2 模型相关概念 200
8.2.3 误差反向传播算法 201
8.2.4 激活函数 201
8.2.5 损失函数 204
8.3 深度学习典型算法 206
8.3.1 前馈神经网络 206
8.3.2 卷积神经网络 207
8.3.3 循环神经网络 210
8.3.4 长短期记忆神经网络 211
8.3.5 图神经网络 213
8.3.6 自编码器 215
8.3.7 变分自编码器 217
8.3.8 注意力机制 218
8.3.9 自注意力机制 220
8.3.10 Transformer 221
8.3.11 生成对抗网络 223
8.3.12 扩散模型 224
第4篇 大数据基础
第9章 大数据概述 228
9.1 什么是大数据 228
9.1.1 大数据定义 228
9.1.2 大数据的特征 229
9.1.3 大数据与传统数据的区别 231
9.1.4 大数据在现实中的应用体现 232
9.1.5 大数据的起源与发展 233
9.1.6 大数据的来源 236
9.2 大数据的技术生态 237
9.2.1 大数据技术架构 237
9.2.2 大数据技术的主要组件 238
9.3 大数据与云计算、物联网的关系 239
9.3.1 大数据与云计算 239
9.3.2 大数据与物联网 241
9.3.3 云计算、大数据与物联网的协同关系 244
第10章 大数据技术原理 246
10.1 大数据存储技术 246
10.1.1 大数据存储技术概述 246
10.1.2 大数据存储的数据类型 247
10.1.3 分布式存储系统 249
10.1.4 大数据存储泛型 254
10.2 大数据处理技术 261
10.2.1 批处理技术 262
10.2.2 流处理技术 264
10.3 大数据分析与挖掘 267
10.3.1 基本原理 267
10.3.2 经典算法 269
第11章 大数据安全 271
11.1 大数据安全的含义 271
11.1.1 定义及背景 272
11.1.2 大数据安全的核心目标 272
11.1.3 发展历程 274
11.1.4 威胁数据安全的主要因素 276
11.2 大数据安全的意义 277
11.2.1 个人层面的意义 277
11.2.2 企业层面的意义 278
11.2.3 社会层面的意义 278
11.3 大数据安全挑战 279
11.3.1 技术平台角度 279
11.3.2 数据应用角度 280
11.4 安全措施与技术方案 281
11.4.1 安全措施 281
11.4.2 Kerberos技术 282
11.4.3 密码学及关键技术 284
11.5 大数据安全标准体系框架 289
11.6 行业大数据应用和安全风险 290
11.6.1 电子政务大数据 290
11.6.2 健康医疗大数据 292
11.6.3 电商行业大数据 292
11.6.4 电信行业大数据 293
第12章 大数据思维 295
12.1 大数据思维的基本含义 295
12.1.1 大数据思维的产生 295
12.1.2 大数据思维的理论基础 296
12.2 大数据思维与传统思维的区别 298
12.2.1 根本区别 298
12.2.2 大数据思维的优势 299
12.2.3 案例比较 300
12.3 大数据思维的应用 300
12.3.1 在具体行业中的应用 301
12.3.2 大数据思维的企业实践案例 301
参考文献 303

内容介绍

本书系统阐述了人工智能三大流派(符号主义、行为主义、联结主义)的核心理论与技术,并融合大数据技术体系,构建完整知识框架。全书分为五部分:导论,综述了人工智能本质特征、发展脉络及社会价值;符号主义篇探讨知识表示与推理,涵盖逻辑系统、专家系统及不确定性处理;行为主义篇重点介绍搜索策略与群体智能算法;联结主义篇介绍数据科学的基础理论,并深度解析机器学习与深度学习技术体系;大数据篇则将内容延伸到大数据的相关技术以及其安全治理。本书内容既系统阐述经典理论,又结合前沿案例解析技术应用;通过算法分析与行业场景融合,实现理论与实践结合。配套资源扫下方二维码获取。
全书结构严谨,案例丰富,语言精练,适合高等院校人工智能、数据科学与大数据技术、计算机科学与技术、电子信息工程、自动化、智能制造工程、信息管理与信息系统、物联网工程、软件工程、智能科学与技术等专业的师生使用,也可供科研人员、相关技术从业......

成金鑫 主编;杨文明 等 副主编 编

文轩九月图书旗舰店店铺主页二维码
文轩九月图书旗舰店
特价好书,就在文轩网!
扫描二维码,访问我们的微信店铺

人工智能与大数据基础(成金鑫)

手机启动微信
扫一扫购买

收藏到微信 or 发给朋友

1. 打开微信,扫一扫左侧二维码

2. 点击右上角图标

点击右上角分享图标

3. 发送给朋友、分享到朋友圈、收藏

发送给朋友、分享到朋友圈、收藏

微信支付

支付宝

扫一扫购买

收藏到微信 or 发给朋友

1. 打开微信,扫一扫左侧二维码

2. 点击右上角图标

点击右上角分享图标

3. 发送给朋友、分享到朋友圈、收藏

发送给朋友、分享到朋友圈、收藏