新华一城书集店铺主页二维码
新华一城书集 微信认证
上海新华书店官方微信书店
微信扫描二维码,访问我们的微信店铺
你可以使用微信联系我们,随时随地的购物、客服咨询、查询订单和物流...

量子群入门:英文 - 沙里

62.25
运费: ¥ 5.00-20.00
库存: 2 件
量子群入门:英文 - 沙里 商品图0
量子群入门:英文 - 沙里 商品缩略图0

商品详情

基本信息

书名:量子群入门

定价:75.00元

作者:(美)沙里 著

出版社:世界图书出版公司

出版日期:2010_04_01

ISBN:9787510005770

字数:

页码:654

版次:1

装帧:平装

开本:24开

商品重量:

编辑推荐


内容提要


quantum groups first arose in the physics literature, particularly in the work of L. D. Faddeev and the Leningrad school, from the 'inverse scattering method', which had been developed to construct and solve 'integrable' quantum systems. They have excited great interest in the past few years because of their unexpected connections with such, at first sight, unrelated parts of mathematics as the construction of knot invariants and the representation theory of algebraic groups in characteristic p.
  In their original form, quantum groups are associative algebras whose defin_ing relations are expressed in terms of a matrix of constants (depending on the integrable system under consideration) called a quantum R_matrix. It was realized independently by V. G. Drinfel'd and M. Jimbo around 1985 that these algebras are Hopf algebras, which, in many cases, are deformations of 'universal enveloping algebras' of Lie algebras. A little later, Yu. I. Manin and S. L. Woronowicz independently constructed non_commutative deforma_tions of the algebra of functions on the groups SL2(C) and SU2, respectively,and showed that many of the classical results about algebraic and topological groups admit analogues in the non_commutative case.

目录


Introduction
1 Poisson_Lie groups and Lie bialgebras
 1.1 Poisson manifolds
 1.2 Poisson_Lie groups
 1.3 Lie bialgebras
 1.4 Duals and doubles
 1.5 Dressing actions and symplectic leaves
 1.6 Deformation of Poisson structures and quantization
 Bibliographical notes
2 Coboundary Poisson_Lie groups and the classical Yang_Baxter equation
 2.1 Coboundary Lie bialgebras
 2.2 Coboundary Poisson_Lie groups
 2.3 Classical integrable systems
 Bibliographical notes
3 Solutions of the classical Yang_Baxter equation
 3.1 Constant solutions of the CYBE
 3.2 Solutions of the CYBE with spectral parameters
 Bibliographical notes
4 Quasitriangular Hopf algebras
 4.1 Hopf algebras
 4.2 Quasitriangular Hopf algebras
 Bibliographical notes
5 Representations and quasitensor categories
 5.1 Monoidal categories
 5.2 Quasitensor categories
 5.3 Invariants of ribbon tangles
 Bibliographical notes
6 Quantization of Lie bialgebras
 6.1 Deformations of Hopf algebras
 6.2 Quantization
 6.3 Quantized universal enveloping algebras
 6.4 The basic example
 6.5 Quantum Kac_Moody algebras
 Bibliographical notes
7 Quantized function algebras
 7.1 The basic example
 7.2 R_matrix quantization
 7.3 Examples of quantized function algebras
 7.4 Differential calculus on quantum groups
 7.5 Integrable lattice models
 Bibliographical notes
8 Structure of QUE algebras:the universal R_matrix
 8.1 The braid group action
 8.2 The quantum Weyl group
 8.3 The quasitriangular structure
 Bibliographical notes
9 Specializations of QUE algebras
 9.1 Rational forms
 9.2 The non_restricted specialization
 9.3 The restricted specialization
 9.4 Automorphisms and real forms
 Bibliographical notes
10 Representations of QUE algebras:  the generic casa
 10.1 Classification of finite_dimensional representations
 10.2 Quantum invariant theory
 Bibliographical notes
11 Representations of QUE algebras:the root of unity case
 11.1 The non_restricted case
 11.2 The restricted case
 11.3 Tilting modules and the fusion tensor product
 Bibliographical notes
12 Infinite_dimensional quantum groups
 12.1 Yangians and their representations
 12.2 Quantum afiine algebras
 12.3 Frobenius_Schur duality for Yangians and quantum affine algebras
 12.4 Yangians and infinite_dimensional classical groups
 12.5 Rational and trigonometric solutions of the QYBE
 Bibliographical notes
13 Quantum harmonic analysis
 13.1 Compact quantum groups and their representations
 13.2 Quantum homogeneous spaces
 13.3 Compact matrix quantum groups
 13.4 A non_compact quantum group
 13.5 q_special functions
 Bibliographical notes
14 Canonical bases
 14.1 Crystal bases
 14.2 Lusztig's canonical bases
 Bibliographical notes
15 Quantum group invariants of knots and 3_manifolds
 15.1 Knots and 3_manifolds: a quick review
 15.2 Link invariants from quantum groups
 15.3 Modular Hopf algebras and 3_manifold invariants
 Bibliographical notes
16 Quasi_Hopf algebras and the Knizhnik_Zamolodchikov equation
 16.1 Quasi_Hopf algebras
 16.2 The Kohno_Drinfel'd monodromy theorem
 16.3 Affine Lie algebras and quantum groups
 16.4 Quasi_Hopf algebras and Grothendieck's esquisse
 Bibliographical notes
Appendix Kac_Moody algebras
 A 1 Generalized Cartan matrices
 A 2 Kac_Moody algebras
 A 3 The invariant bilinear form
 A 4 Roots
 A 5 The Weyl group
 A 6 Root vectors
 A 7 Aide Lie algebras
 A 8 Highest weight modules
References
Index of notation
General index

作者介绍


序言


新华一城书集店铺主页二维码
新华一城书集 微信公众号认证
上海新华书店官方微信书店
扫描二维码,访问我们的微信店铺
随时随地的购物、客服咨询、查询订单和物流...

量子群入门:英文 - 沙里

手机启动微信
扫一扫购买

收藏到微信 or 发给朋友

1. 打开微信,扫一扫左侧二维码

2. 点击右上角图标

点击右上角分享图标

3. 发送给朋友、分享到朋友圈、收藏

发送给朋友、分享到朋友圈、收藏

微信支付

支付宝

扫一扫购买

打开微信,扫一扫

或搜索微信号:xhbookmall
新华一城书集微书店官方微信公众号

收藏到微信 or 发给朋友

1. 打开微信,扫一扫左侧二维码

2. 点击右上角图标

点击右上角分享图标

3. 发送给朋友、分享到朋友圈、收藏

发送给朋友、分享到朋友圈、收藏