商品详情
定价:89.0
ISBN:9787111720751
作者:李进
版次:1
内容提要:
本书着眼于人工智能自身的安全问题,旨在将当前人工智能安全的基础问题、关键问题、核心算法进行归纳总结。本书的定位是学习人工智能安全的入门书籍,因此先详细介绍了人工智能安全相关的基础知识,包括相关的基础算法和安全模型,使得读者明确人工智能面临的威胁,对人工智能安全有一个大体的概念和初步认识。然后将人工智能系统的主要安全威胁分为模型安全性威胁和模型与数据隐私威胁两大类。模型安全性威胁主要包括投毒攻击、后门攻击、对抗攻击、深度伪造。模型与数据隐私威胁主要包括窃取模型的权重、结构、决策边界等模型本身信息和训练数据集信息。
本书在介绍上述经典攻击技术的同时,也介绍了相应的防御方法,使得读者通过这些攻击了解人工智能模型的脆弱性,并对如何防御攻击的方法、如何增强人工智能模型的鲁棒性有一定的思考。本书主要从隐私保护的基本概念、数据隐私、模型窃取与防御三个维度来介绍通用的隐私保护定义与技术、典型的机器学习数据隐私攻击方式和相应的防御手段,并探讨了模型窃取攻击及其对应的防御方法,使得读者能够直观全面地了解模型与数据隐私并掌握一些经典算法的整体实现流程。这本书还介绍了真实世界场景中不同传感器下的对抗攻击和相应的防御措施以及人工智能系统对抗博弈的现状。相比于数字世界的攻击,真实世界的攻击更需要引起人们的关注,一旦犯罪分子恶意利用人工智能系统的漏洞,将会给人们的生产生活带来安全威胁,影响大家的人身安全、财产安全还有个人隐私。读者可以通过阅读此书的知识内容及相关经典案例了解掌握人工智能系统面临的攻防技术,了解如何在前人的基础上,研究出针对各种攻击的防御方法,为可信人工智能助力。
本书适合期望入门人工智能安全的计算机相关专业的学生、技术工作者,人工智能领域的从业人员,对人工智能安全感兴趣的人员,致力于建设可信人工智能的人员,本书所涉及的内容可以帮助读者快速全面地了解人工智能安全所涉及的问题及技术,了解相关攻防技术算法的基本原理,可帮助人工智能领域的开发人员做出更安全的应用产品。
目录:
推荐序
前言
第一部分基础知识
第1章人工智能概述2
11人工智能发展现状2
111跌跌撞撞的发展史2
112充满诱惑与希望的现状3
113百家争鸣的技术生态圈4
114像人一样行动:通过图灵测试
就足够了吗5
115像人一样思考:一定需要具备
意识吗7
116合理地思考:一定需要具备逻辑
思维吗8
117合理地行动:能带领我们走得
更远吗9
12人工智能安全现状 12
121模型安全性现状13
122模型与数据隐私现状14
123人工智能安全法规现状15
第2章人工智能基本算法16
21基本概念16
22经典算法17
221支持向量机17
222随机森林22
223逻辑回归25
224K近邻27
225神经网络28
226卷积神经网络31
227强化学习36
23主流算法43
231生成对抗网络43
232联邦学习45
233在线学习49
24算法可解释性51
241可解释性问题52
242事前可解释52
243事后可解释53
244可解释性与安全性分析56
25基础算法实现案例56
26小结57
第3章人工智能安全模型58
31人工智能安全定义58
311人工智能技术组成58
312人工智能安全模型概述59
32人工智能安全问题60
321数据安全问题60
322算法安全问题60
323模型安全问题61
33威胁模型和常见攻击62
331威胁模型63
332常见攻击65
34模型窃取攻击与防御实现
案例77
35小结77
第二部分模型安全性
第4章投毒攻击与防御80
41投毒攻击80
411针对传统机器学习模型的投毒
攻击81
412深度神经网络中的投毒攻击84
413强化学习中的投毒攻击89
414针对其他系统的投毒攻击89
42针对投毒攻击的防御方法90
421鲁棒学习91
422数据清洗92
423模型防御93
424输出防御93
43投毒攻击实现案例94
44小结94
第5章后门攻击与防御95
51后门攻击与防御概述95
511攻击场景97
512机器学习生命周期中的后门
攻击97
513后门攻击相关定义98
514威胁模型99
52图像后门攻击100
521早期后门攻击100
522基于触发器优化的后门
攻击102
523面向触发器隐蔽性的后门
攻击104
524“干净标签”条件下的后门
攻击109
525其他后门攻击方法112
53图像后门防御113
531基于数据预处理的防御
方法114
532基于模型重建的防御方法114
533基于触发器生成的防御方法115
534基于模型诊断的防御方法116
535基于投毒抑制的防御方法117
536基于训练样本过滤的防御
方法117
537基于测试样本过滤的防御
方法117
538认证的防御方法118
54其他场景下的后门模型118
55后门攻击和其他方法的关系119
551与对抗样本攻击的关系119
552与投毒攻击的关系120
56后门攻击与防御实现案例120
57小结121
第6章对抗攻击与防御122
61对抗攻击与防御概述122
62图像对抗样本生成技术123
621基于梯度的对抗样本生成124
622基于优化的对抗样本生成126
623基于梯度估计的对抗样本
生成128
624基于决策的对抗样本生成130
63图像对抗样本防御131
631输入层面的防御方法131
632模型层面的防御方法134
633可验证的防御方法138
634其他防御方法139
64文本对抗样本生成与防御140
641文本对抗样本生成140
642文本对抗样本防御150
65其他数字对抗样本155
651图对抗样本155
652恶意软件检测模型中的对抗
样本162
66对抗攻击与防御实现
案例168
67小结169
第7章深度伪造攻击与防御170
71深度伪造攻击与防御概述170
72深度伪造人脸生成171
721人脸合成171
722身份交换172
723面部属性操作175
724面部表情操作176
73深度伪造人脸检测176
731基于帧内差异的检测方法177
732基于帧间差异的检测方法180
74深度伪造语音生成与检测182
741深度伪造语音生成182
742深度伪造语音检测185
75深度伪造攻击与防御实现
案例186
76小结187
第三部分模型与数据隐私
第8章隐私保护基本概念190
81隐私保护概述190
82安全多方计算191
821安全多方计算的基本概念191
822基于混淆电路的安全多方
计算193
823GMW协议195
824基于门限秘密共享的安全多方
计算196
825BGW协议199
83同态加密200
831同态加密技术简介200
832BGV全同态加密算法202
84差分隐私205
841概念与定义207
842基础技术209
85差分隐私的决策树构建实现
案例213
86小结214
第9章数据隐私215
91数据隐私概述215
92成员推理攻击215
921成员推理攻击类型216
922成员推理攻击方法217
923攻击执行的场景224
924攻击成功执行的机理228
93数据集重建攻击228
931联邦学习下的数据集重建
攻击229
932在线学习下的数据集重建
攻击232
94防御手段233
941针对成员推理攻击的防御233
942针对数据集重建攻击的防御241
95小结242
第10章模型窃取攻击与防御243
101模型窃取攻击与防御概述243
1011模型窃取动机244
1012模型窃取目标244
102模型参数窃取攻击245
1021基于线性回归模型的参数
窃取245
1022基于决策树模型的参数
窃取245
1023基于神经网络模型的参数
窃取246
1024基于可解释信息模型的
参数窃取250
1025训练超参数窃取攻击252
103模型结构窃取攻击254
1031基于元模型的模型结构
窃取254
1032基于时间侧信道的模型结构
窃取255
104模型决策边界窃取攻击256
1041基于雅可比矩阵的模型决策
边界窃取257
1042基于随机合成样本的模型决
策边界窃取258
1043基于生成对抗网络的模型决
策边界窃取259
105模型功能窃取攻击261
1051基于强化学习的模型功能
窃取261
1052基于混合策略的模型功能
窃取262
1053基于主动学习的模型功能
窃取264
106模型窃取攻击的防御手段265
1061基于后验概率扰动的防御
策略265
1062基于多个样本特征之间距离
分布的异常检测266
1063自适应错误信息的防御
策略267
107模型窃取攻击与防御实现
案例269
108小结269
第四部分应用与实践
第11章面向真实世界的对抗样本272
111面向真实世界的对抗样本
概述272
112不同传感器的对抗样本
生成273
1121光学相机传感器273
1122激光雷达传感器279
1123麦克风传感器282
1124多模态传感器283
113不同传感器的对抗样本
防御284
1131光学相机传感器284
1132激光雷达传感器286
1133麦克风传感器287
114自动驾驶应用中的安全与
对抗287
1141基于深度学习的ADS工作
流程288
1142针对ADS的攻击290
1143针对ADS的防御293
115人工智能博弈(游戏
对抗)294
1151完备信息博弈295
1152非完备信息博弈298
1153非完备信息博弈(游戏
对抗)299
116小结301
参考文献302
- 机械工业出版社旗舰店 (微信公众号认证)
- 扫描二维码,访问我们的微信店铺
- 随时随地的购物、客服咨询、查询订单和物流...