商品详情
书名:数理统计(第四版)
定价:49.0
ISBN:9787030430090
作者:师义民,徐伟,秦超英,许勇
版次:1
出版时间:2017-12
在线试读:
第1章统计量与抽样分布 数理统计学是研究随机现象规律性的一门学科,它以概率论为理论基础,研究如何以有效的方式收集、整理和分析受到随机因素影响的数据,并对所考察的问题作出推理和预测,直至为采取某种决策提供依据和建议。数理统计研究的内容非常广泛,概括起来可分为两大类:一是试验设计,即研究如何对随机现象进行观察和试验,以便更合理更有效地获得试验数据;二是统计推断,即研究如何对所获得的有限数据进行整理和加工,并对所考察的对象的某些性质作出尽可能精确可靠的判断。数理统计是一门应用性很强的数学学科,已被广泛地应用到自然科学和工程技术的各个领域。数理统计方法已成为各学科从事科学研究以及在生产、管理、经济等部门进行有效工作的必不可少的数学工具。本章在回顾数理统计中的一些基本概念,如总体、样本、统计量和经验分布函数的基础上,介绍充分统计量、完备统计量以及一些重要统计量的分布等。 1.1.1总体和样本 1.总体在数理统计学中,我们把所研究对象的全体元素组成的集合称为总体(或称母体),而把组成总体的每个元素称为个体。例如,在考察某批灯泡的质量时,该批灯泡的全体就组成一个总体,而其中每个灯泡就是个体。但是,在实际应用中,人们所关心的并不是总体中个体的一切方面,而所研究的往往是总体中个体的某一项或某几项数量指标。例如,考察灯泡质量时,我们并不关心灯泡的形状、式样等特征,而只研究灯泡的寿命、亮度等数量指标特征。如果只考察灯泡寿命这一项指标时,由于一批灯泡中每个灯泡都有一个确定的寿命值,因此,自然地把这批灯泡寿命值的全体视为总体,而其中每个灯泡的寿命值就是个体。由于具有不同寿命值的灯泡的比例是按一定规律分布的,即任取一个灯泡其寿命为某一值具有一定概率,因而,这批灯泡的寿命是一个随机变量,也就是说,可以用一个随机变量X来表示这批灯泡的寿命这个总体。因此,在数理统计中,任何一个总体都可用一个随机变量来描述。总体的分布及数字特征,即指表示总体的随机变量的分布及数字特征。对总体的研究也就归结为对表示总体的随机变量的研究。 2.样本为了了解总体X的分布规律或某些特征,必须对总体进行抽样观察,即从总体X中,随机抽取n个个体X1,X2,…,Xn,记为(X1,X2,…,Xn)T,并称此为来自总体X的容量为n的样本。由于每个Xi都是从总体X中随机抽取的,它的取值就在总体X的可能取值范围内随机取得,自然每个Xi也是随机变量,从而样本(X1,X2,…,Xn)T是一个n维随机向量。在抽样观测后,它们是n个数据(x1,x2,…,xn)T,称之为样本(X1,X2,…,Xn)T的一个观测值,简称样本值。样本(X1,X2,…,Xn)T可能取值的全体称为样本空间,记为Ω。 我们的目的是依据从总体X中抽取的一个样本值(x1,x2,…,xn)T,对总体X的分布或某些特征进行分析推断,因而要求抽取的样本能很好地反映总体的特征且便于处理,于是,提出下面两点要求: (1)代表性——要求样本X1,X2,…,Xn同分布且每个Xi与总体
定价:49.0
ISBN:9787030430090
作者:师义民,徐伟,秦超英,许勇
版次:1
出版时间:2017-12
在线试读:
第1章统计量与抽样分布 数理统计学是研究随机现象规律性的一门学科,它以概率论为理论基础,研究如何以有效的方式收集、整理和分析受到随机因素影响的数据,并对所考察的问题作出推理和预测,直至为采取某种决策提供依据和建议。数理统计研究的内容非常广泛,概括起来可分为两大类:一是试验设计,即研究如何对随机现象进行观察和试验,以便更合理更有效地获得试验数据;二是统计推断,即研究如何对所获得的有限数据进行整理和加工,并对所考察的对象的某些性质作出尽可能精确可靠的判断。数理统计是一门应用性很强的数学学科,已被广泛地应用到自然科学和工程技术的各个领域。数理统计方法已成为各学科从事科学研究以及在生产、管理、经济等部门进行有效工作的必不可少的数学工具。本章在回顾数理统计中的一些基本概念,如总体、样本、统计量和经验分布函数的基础上,介绍充分统计量、完备统计量以及一些重要统计量的分布等。 1.1.1总体和样本 1.总体在数理统计学中,我们把所研究对象的全体元素组成的集合称为总体(或称母体),而把组成总体的每个元素称为个体。例如,在考察某批灯泡的质量时,该批灯泡的全体就组成一个总体,而其中每个灯泡就是个体。但是,在实际应用中,人们所关心的并不是总体中个体的一切方面,而所研究的往往是总体中个体的某一项或某几项数量指标。例如,考察灯泡质量时,我们并不关心灯泡的形状、式样等特征,而只研究灯泡的寿命、亮度等数量指标特征。如果只考察灯泡寿命这一项指标时,由于一批灯泡中每个灯泡都有一个确定的寿命值,因此,自然地把这批灯泡寿命值的全体视为总体,而其中每个灯泡的寿命值就是个体。由于具有不同寿命值的灯泡的比例是按一定规律分布的,即任取一个灯泡其寿命为某一值具有一定概率,因而,这批灯泡的寿命是一个随机变量,也就是说,可以用一个随机变量X来表示这批灯泡的寿命这个总体。因此,在数理统计中,任何一个总体都可用一个随机变量来描述。总体的分布及数字特征,即指表示总体的随机变量的分布及数字特征。对总体的研究也就归结为对表示总体的随机变量的研究。 2.样本为了了解总体X的分布规律或某些特征,必须对总体进行抽样观察,即从总体X中,随机抽取n个个体X1,X2,…,Xn,记为(X1,X2,…,Xn)T,并称此为来自总体X的容量为n的样本。由于每个Xi都是从总体X中随机抽取的,它的取值就在总体X的可能取值范围内随机取得,自然每个Xi也是随机变量,从而样本(X1,X2,…,Xn)T是一个n维随机向量。在抽样观测后,它们是n个数据(x1,x2,…,xn)T,称之为样本(X1,X2,…,Xn)T的一个观测值,简称样本值。样本(X1,X2,…,Xn)T可能取值的全体称为样本空间,记为Ω。 我们的目的是依据从总体X中抽取的一个样本值(x1,x2,…,xn)T,对总体X的分布或某些特征进行分析推断,因而要求抽取的样本能很好地反映总体的特征且便于处理,于是,提出下面两点要求: (1)代表性——要求样本X1,X2,…,Xn同分布且每个Xi与总体