数据挖掘:概念与技术(原书第3版) Jiawei Han, Micheline Kamber 计算机科学丛书
¥79.00
运费: | 免运费 |
库存: | 2032 件 |
商品详情
书名:数据挖掘:概念与技术(原书第3版)
定价:79.0
ISBN:9787111391401
作者:Jiawei Han, Micheline Kamber
版次:1
出版时间:2012-08
内容提要:
目录:
定价:79.0
ISBN:9787111391401
作者:Jiawei Han, Micheline Kamber
版次:1
出版时间:2012-08
内容提要:
内容简介 | |
《数据挖掘:概念与技术(原书第3版)》完整全面地讲述数据挖掘的概念、方法、技术和*新研究进展。本书对前两版做了全面修订,加强和重新组织了全书的技术内容,重点论述了数据预处理、频繁模式挖掘、分类和聚类等的内容,还全面讲述了olap和离群点检测,并研讨了挖掘网络、复杂数据类型以及重要应用领域。 《数据挖掘:概念与技术(原书第3版)》是数据挖掘和知识发现领域内的所有教师、研究人员、开发人员和用户都必读的参考书,是一本适用于数据分析、数据挖掘和知识发现课程的*秀教材,可以用做高年级本科生或者一年级研究生的数据挖掘导论教材。 |
目录:
目录 | |
出版者的话 中文版序 译者序 译者简介 第3版序 *2版序 前言 致谢 作者简介 *1章引论1 1.1为什么进行数据挖掘1 1.1.1迈向信息时代1 1.1.2数据挖掘是信息技术的进化2 1.2什么是数据挖掘4 1.3可以挖掘什么类型的数据6 1.3.1数据库数据6 1.3.2数据仓库7 1.3.3事务数据9 1.3.4其他类型的数据9 .1.4可以挖掘什么类型的模式10 1.4.1类/概念描述:特征化与区分10 1.4.2挖掘频繁模式、关联和相关性11 1.4.3用于预测分析的分类与回归12 1.4.4聚类分析13 1.4.5离群点分析14 1.4.6所有模式都是有趣的吗14 1.5使用什么技术15 1.5.1统计学15 1.5.2机器学习16 1.5.3数据库系统与数据仓库17 1.5.4信息检索17 1.6面向什么类型的应用18 1.6.1商务智能18 1.6.2web搜索引擎18 1.7数据挖掘的主要问题19 1.7.1挖掘方法19 1.7.2用户界面20 1.7.3有效性和可伸缩性21 1.7.4数据库类型的多样性21 1.7.5数据挖掘与社会21 1.8小结22 1.9习题23 1.10文献注释23 *2章认识数据26 2.1数据对象与属性类型26 2.1.1什么是属性27 2.1.2标称属性27 2.1.3二元属性27 2.1.4序数属性28 2.1.5数值属性28 2.1.6离散属性与连续属性29 2.2数据的基本统计描述29 2.2.1中心趋势度量:均值、中位数和众数30 2.2.2度量数据散布:极差、四分位数、方差、标准差和四分位数极差32 2.2.3数据的基本统计描述的图形显示34 2.3数据可视化37 2.3.1基于像素的可视化技术37 2.3.2几何投影可视化技术38 2.3.3基于图符的可视化技术40 2.3.4层次可视化技术42 2.3.5可视化复杂对象和关系42 2.4度量数据的相似性和相异性44 2.4.1数据矩阵与相异性矩阵45 2.4.2标称属性的邻近性度量46 2.4.3二元属性的邻近性度量46 2.4.4数值属性的相异性:闵可夫斯基距离48 2.4.5序数属性的邻近性度量49 2.4.6混合类型属性的相异性50 2.4.7余弦相似性51 2.5小结52 2.6习题53 2.7文献注释54 第3章数据预处理55 3.1数据预处理:概述55 3.1.1数据质量:为什么要对数据预处理55 3.1.2数据预处理的主要任务56 3.2数据清理58 3.2.1缺失值58 3.2.2噪声数据59 3.2.3数据清理作为一个过程60 3.3数据集成61 3.3.1实体识别问题62 3.3.2冗余和相关分析62 3.3.3元组重复65 3.3.4数据值冲突的检测与处理65 3.4数据归约65 3.4.1数据归约策略概述66 3.4.2小波变换66 3.4.3主成分分析67 3.4.4属性子集选择68 3.4.5回归和对数线性模型:参数化数据归约69 3.4.6直方图70 3.4.7聚类71 3.4.8抽样71 3.4.9数据立方体聚集72 3.5数据变换与数据离散化73 3.5.1数据变换策略概述73 3.5.2通过规范化变换数据74 3.5.3通过分箱离散化76 3.5.4通过直方图分析离散化76 3.5.5通过聚类、决策树和相关分析离散化76 3.5.6标称数据的概念分层产生77 3.6小结79 3.7习题79 3.8文献注释80 第4章数据仓库与联机分析处理82 4.1数据仓库:基本概念82 4.1.1什么是数据仓库82 4.1.2操作数据库系统与数据仓库的区别84 4.1.3为什么需要分离的数据仓库85 4.1.4数据仓库:一种多层体系结构85 4.1.5数据仓库模型:企业仓库、数据集市和虚拟仓库87 4.1.6数据提取、变换和装入88 4.1.7元数据库88 4.2数据仓库建模:数据立方体与olap89 4.2.1数据立方体:一种多维数据模型89 4.2.2星形、雪花形和事实星座:多维数据模型的模式91 4.2.3维:概念分层的作用94 4.2.4度量的分类和计算95 4.2.5典型的olap操作96 4.2.6查询多维数据库的星网查询模型98 4.3数据仓库的设计与使用99 4.3.1数据仓库的设计的商务分析框架99 4.3.2数据仓库的设计过程100 4.3.3数据仓库用于信息处理101 4.3.4从联机分析处理到多维数据挖掘102 4.4数据仓库的实现103 4.4.1数据立方体的有效计算:概述103 4.4.2索引olap数据:位图索引和连接索引105 4.4.3olap查询的有效处理107 4.4.4olap服务器结构:rolap、molap、holap的比较107 4.5数据泛化:面向属性的归纳109 4.5.1数据特征的面向属性的归纳109 4.5.2面向属性归纳的有效实现113 4.5.3类比较的面向属性归纳114 4.6小结116 4.7习题117 4.8文献注释119 第5章数据立方体技术121 5.1数据立方体计算:基本概念121 5.1.1立方体物化:完全立方体、冰山立方体、闭立方体和立方体外壳122 5.1.2数据立方体计算的一般策略124 5.2数据立方体计算方法126 5.2.1完全立方体计算的多路数组聚集126 5.2.2buc:从顶点方体向下计算冰山立方体129 5.2.3star-cubing:使用动态星树结构计算冰山立方体132 5.2.4为快速高维olap预计算壳片段136 5.3使用探索立方体技术处理*级查询141 5.3.1抽样立方体:样本数据上基于olap的挖掘141 5.3.2排序立方体:top-k查询的有效计算145 5.4数据立方体空间的多维数据分析147 5.4.1预测立方体:立方体空间的预测挖掘147 5.4.2多特征立方体:多粒度上的复杂聚集149 5.4.3基于异常的、发现驱动的立方体空间探查149 5.5小结152 5.6习题152 5.7文献注释155 第6章挖掘频繁模式、关联和相关性:基本概念和方法157 6.1基本概念157 6.1.1购物篮分析:一个诱发例子157 6.1.2频繁项集、闭项集和关联规则158 6.2频繁项集挖掘方法160 6.2.1apriori算法:通过限制候选产生发现频繁项集160 6.2.2由频繁项集产生关联规则164 6.2.3提高apriori算法的效率165 6.2.4挖掘频繁项集的模式增长方法166 6.2.5使用垂直数据格式挖掘频繁项集169 6.2.6挖掘闭模式和极大模式170 6.3哪些模式是有趣的:模式评估方法171 6.3.1强规则不一定是有趣的172 6.3.2从关联分析到相关分析172 6.3.3模式评估度量比较173 6.4小结176 6.5习题177 6.6文献注释179 第7章*级模式挖掘180 7.1模式挖掘:一个路线图180 7.2多层、多维空间中的模式挖掘182 7.2.1挖掘多层关联规则182 7.2.2挖掘多维关联规则185 7.2.3挖掘量化关联规则186 7.2.4挖掘稀有模式和负模式188 7.3基于约束的频繁模式挖掘190 7.3.1关联规则的元规则制导挖掘190 7 |
- 机械工业出版社旗舰店 (微信公众号认证)
- 扫描二维码,访问我们的微信店铺
- 随时随地的购物、客服咨询、查询订单和物流...