化学工业出版社官方旗舰店店铺主页二维码
化学工业出版社官方旗舰店 微信认证
微信扫描二维码,访问我们的微信店铺
你可以使用微信联系我们,随时随地的购物、客服咨询、查询订单和物流...

化学工业智能制造 互联化工 吉旭 化学工程与工艺 过程装备与控制工程 材料科学与工程 环境科学与工程等专业本科及研究生教材书籍

55.20
运费: ¥ 0.00-20.00
化学工业智能制造 互联化工 吉旭 化学工程与工艺 过程装备与控制工程 材料科学与工程 环境科学与工程等专业本科及研究生教材书籍 商品图0
化学工业智能制造 互联化工 吉旭 化学工程与工艺 过程装备与控制工程 材料科学与工程 环境科学与工程等专业本科及研究生教材书籍 商品图1
化学工业智能制造 互联化工 吉旭 化学工程与工艺 过程装备与控制工程 材料科学与工程 环境科学与工程等专业本科及研究生教材书籍 商品图2
化学工业智能制造 互联化工 吉旭 化学工程与工艺 过程装备与控制工程 材料科学与工程 环境科学与工程等专业本科及研究生教材书籍 商品缩略图0 化学工业智能制造 互联化工 吉旭 化学工程与工艺 过程装备与控制工程 材料科学与工程 环境科学与工程等专业本科及研究生教材书籍 商品缩略图1 化学工业智能制造 互联化工 吉旭 化学工程与工艺 过程装备与控制工程 材料科学与工程 环境科学与工程等专业本科及研究生教材书籍 商品缩略图2

商品详情

书名:化学工业智能制造——互联化工(吉旭)
定价:69.0
ISBN:9787122369123
作者:吉旭、周利,,编著
版次:第1版
出版时间:2020-11

内容提要:


《化学工业智能制造—互联化工》一书从计算技术和行业应用出发,对“互联化工”的架构、关键技术、模式等进行了系统介绍,包括物联网、工业大数据、数据挖掘等技术,及其在化学工业的具体应用。全书共11章,分别为:智能制造概述、智能制造之经典生产制造体系基础、智能制造之现代信息技术基础、互联化工、互联化工的关键信息技术、云制造—互联化工的跨尺度模式、数据挖掘、数据预处理、数据挖掘算法、数据挖掘应用案例、大数据可视化技术。 《化学工业智能制造—互联化工》可作为化学工程与工艺、过程装备与控制工程、材料科学与工程、冶金工程、环境科学与工程、安全科学与工程等专业本科及研究生教材,也可作为计算机类、电子信息类、电气类专业读者的拓展性学习用书。




作者简介:


吉旭,四川大学 化工学院,教授,中国系统工程学会过程系统专业委员会委员、四川省计算机学会高性能计算专业委员会委员,四川大学互联化工研究中心首席科学家,四川大学化工学院过程系统工程学术带头人。 研究方向为过程系统工程理论研究与应用开发,主攻连续生产行业技术经济分析与评价、过程系统信息化理论与应用、过程系统优化、过程系统可靠性分析、计算机集成过程系统(CIPS)研发等。 研究领域包括:过程系统工程理论与应用研究,材料加工的数字化技术及其工业化,高通量与材料基因组技术,过程行业智能制造及工业智能化理论与技术,工业大数据和人工智能技术,面向过程行业的先进控制(APC)、CIPS、CAPP和KM系统的研究与开发。 主持国家自然科学基金面上项目5项,四川省科技攻关项目项、企业协作项目三十余项,近年来在工业智能化领域完成科技成果转化超过3000万元。主持了中国建筑西部建设股份有限公司的工业智能化项目,该项目获2018年工信部智能制造及人工智能技术应用示范项目。发表SCI收录论文50余篇,出版教材1部。

目录:


第1章 智能制造概述  / 1
1.1 智能制造发展背景  / 2
1.2 智能制造定义  / 3
1.3 智能制造架构  / 6
1.4 智能制造的特征  / 8
1.5 各国推动智能制造发展的产业计划  / 9
1.5.1 美国先进制造业国家战略计划  / 9
1.5.2 德国工业4.0  / 11
1.5.3 新工业法国  / 11
1.5.4 英国工业2050战略  / 11
1.5.5 日本工业价值链产业联盟  / 12
1.5.6 中国制造强国战略  / 12
1.5.7 各国智能制造策略比较  / 13

第2章 智能制造之经典生产制造体系基础  / 15
2.1 准时制生产  / 16
2.2 精益生产  / 18
2.3 柔性制造  / 20
2.4 敏捷制造  / 20
2.5 全面的质量管理和六西格玛质量管理  / 21
2.5.1 全面质量管理  / 22
2.5.2 六西格玛质量管理  / 23
2.5.3 质量管理中的数据分析工具  / 25
2.6 企业资源计划  / 26
2.6.1 企业资源计划的概念  / 26
2.6.2 企业资源计划的管理思想  / 27
2.6.3 ERP的计划制定及计划层次  / 28
2.6.4 与ERP系统集成的相关系统及工具  / 31
2.7 知识管理与知识自动化  / 32
2.7.1 知识管理的概念  / 32
2.7.2 知识重组与知识推理  / 34
2.7.3 知识自动化与智能制造  / 35
2.8 计算机集成控制技术  / 36
2.8.1 过程控制技术发展阶段  / 36
2.8.2 计算机集成过程系统  / 37

第3章 智能制造之现代信息技术基础  / 39
3.1 物联网与工业互联网  / 40
3.1.1 物联网概念  / 40
3.1.2 物联网设备  / 40
3.1.3 基于物联网技术的工业互联网  / 44
3.2 面向智能制造的工业通信技术  / 46
3.2.1 面向智能制造的工业通信架构  / 46
3.2.2 工业现场总线通信技术  / 47
3.2.3 工业以太网通信技术  / 48
3.2.4 工业无线通信技术  / 49
3.2.5 5G通信技术  / 50
3.2.6 网络通信的安全  / 53
3.3 大数据  / 54
3.3.1 数据信息知识智慧模型  / 54
3.3.2 大数据概念  / 56
3.3.3 大数据的资源化意义  / 58
3.3.4 大数据分析方法与传统方法的区别  / 59
3.3.5 数据的结构类别  / 61
3.3.6 大数据技术  / 62
3.4 云计算与边缘计算  / 63
3.4.1 云计算的概念与特点  / 63
3.4.2 基于云计算的大数据架构  / 65
3.4.3 工业云  / 66
3.4.4 边缘计算  / 67
3.5 工业大数据  / 69
3.5.1 工业大数据概念  / 69
3.5.2 工业大数据的来源  / 70
3.5.3 工业大数据的价值  / 71
3.5.4 工业大数据的应用策略和方法  / 73
3.5.5 工业大数据的关键技术  / 75
3.5.6 工业大数据管理架构  / 76
3.5.7 工业大数据的质量评价  / 77
3.6 信息物理系统  / 78
3.6.1 信息物理系统概念  / 78
3.6.2 信息物理系统与智能制造  / 81
3.6.3 信息物理系统技术架构  / 82
3.7 人工智能  / 84
3.7.1 人工智能的概念  / 84
3.7.2 人工智能的发展历程  / 85
3.7.3 人工智能的研究范围  / 87
3.7.4 大数据、人工智能与智能制造  / 88

第4章 互联化工  / 93
4.1 化学工业发展中的挑战与问题提出  / 94
4.2 化学工业对智能化技术的应用需求  / 96
4.3 互联化工  / 97
4.3.1 互联化工的概念  / 97
4.3.2 互联化工架构模型  / 101
4.4 互联化工的典型业务场景与模式  / 105
4.4.1 绿色化的产品工程、工业工程与制造模式  / 106
4.4.2 商务智能化与优化控制一体化  / 107
4.4.3 面向供应链协同的柔性生产系统  / 110
4.4.4 基于可靠性管理和知识集成的质量管理体系  / 113
4.4.5 智能化设备与设备全生命周期管理  / 115
4.4.6 制造执行系统  / 117
4.4.7 能质网络集成管理平台与优化运行  / 119
4.4.8 健康、安全、环境管理  / 121
4.4.9 知识体系与知识自动化  / 126

第5章 互联化工的关键信息技术  / 134
5.1 互联化工的数字化技术  / 135
5.1.1 互联化工的数据架构  / 135
5.1.2 数据驱动的数字化技术  / 136
5.1.3 基于过程机理的流程模拟技术  / 137
5.1.4 互联化工的数据安全技术  / 139
5.2 面向互联化工的工业互联网架构  / 140
5.3 面向互联化工的信息物理系统  / 142
5.3.1 互联化工信息物理系统层级划分  / 142
5.3.2 互联化工信息物理系统的技术特征  / 143
5.4 智慧化单元操作与单元过程  / 144
5.4.1 基于信息物理系统的智慧化单元架构  / 144
5.4.2 智慧化单元的控制过程  / 145
5.4.3 智慧化单元的性能特点  / 145
5.5 智能控制技术  / 146
5.5.1 互联化工的智能控制要求  / 146
5.5.2 智能控制技术  / 147
5.5.3 智能控制技术的模式  / 148
5.5.4 智能控制技术应用  / 149

第6章 云制造——互联化工的跨尺度模式  / 152
6.1 云制造概述  / 153
6.1.1 云制造的概念  / 153
6.1.2 云制造的服务对象  / 154
6.1.3 云制造能力服务  / 154
6.1.4 制造资源服务  / 155
6.2 云制造架构  / 156
6.3 云制造的支撑技术  / 158
6.4 云制造的数字化模型  / 160
6.4.1 云制造的数字化核心技术  / 161
6.4.2 制造资源与能力的数字化描述  / 162
6.4.3 能力评价模型  / 163
6.4.4 服务组合优选算法模型  / 164
6.5 云制造安全技术  / 166
6.6 云制造的业务模式  / 168
6.6.1 云制造平台的运营管理  / 168
6.6.2 云制造平台的几种商业运营模式  / 168

第7章 数据挖掘  / 171
7.1 数据的相关概念  / 172
7.1.1 数据特征属性  / 172
7.1.2 数据管理的几个常用概念  / 174
7.1.3 数据的尺度属性  / 174
7.1.4 数据质量评估  / 175
7.2 数据的存储方式  / 177
7.2.1 结构化数据的存储  / 177
7.2.2 非结构化数据的存储  / 177
7.2.3 面向主题的数据存储—数据仓库  / 179
7.3 数据挖掘概述  / 179
7.3.1 数据挖掘的概念  / 179
7.3.2 数据挖掘技术的特点  / 180
7.3.3 数据挖掘模型  / 181
7.4 数据挖掘项目的实施步骤  / 183
7.4.1 问题定义  / 184
7.4.2 数据预处理  / 185
7.4.3 数据探索  / 186
7.4.4 建立数据挖掘模型  / 187
7.4.5 结果解释与评估  / 188
7.5 数据挖掘项目的关键角色  / 188
7.6 常用的数据挖掘软件工具  / 189

第8章 数据预处理  / 192
8.1 数据整合  / 193
8.2 数据清洗  / 197
8.3 数据转换  / 199
8.4 数据归约  / 201
8.5 特征属性的筛选(降维)方法  / 202
8.5.1 基于线性相关性指标的筛选  / 202
8.5.2 基于灰色关联法的筛选  / 203
8.5.3 主成分分析法  / 204
8.6 共线性问题  / 204
8.6.1 共线性问题的识别  / 204
8.6.2 消除共线性问题  / 205
8.7 数据仓库  / 205
8.7.1 数据仓库概要  / 205
8.7.2 构建数据仓库的步骤  / 207

第9章 数据挖掘算法  / 210
9.1 聚类算法  / 211
9.1.1 聚类算法概要  / 211
9.1.2 常用的聚类算法  / 211
9.1.3 聚类分析相似度的衡量  / 212
9.1.4 聚类分析步骤  / 212
9.1.5 聚类算法及结果的评价标准  / 213
9.1.6 K-means聚类算法  / 213
9.2 分类算法  / 216
9.2.1 分类算法概要  / 216
9.2.2 分类结果的评判  / 216
9.2.3 k-近邻分类算法  / 217
9.2.4 人工神经网络  / 219
9.3 关联规则  / 223
9.3.1 关联规则的基本概念  / 223
9.3.2 关联规则的类型  / 224
9.3.3 Apriori算法  / 224
9.4 回归分析  / 227
9.4.1 回归分析方法  / 227
9.4.2 回归分析的步骤与逐步回归  / 228
9.5 预测算法  / 230
9.5.1 预测的基本概念  / 230
9.5.2 常用的预测方法  / 231
9.5.3 时间序列分析概要  / 233
9.5.4 时间序列分析的算法策略  / 235
9.5.5 时间序列分析的步骤  / 237
9.6 优化问题  / 239
9.6.1 遗传算法的概述  / 239
9.6.2 蚁群算法的基本原理  / 240
9.6.3 模拟退火算法的概述  / 241
9.7 诊断概要  / 244
9.7.1 离群点  / 244
9.7.2 离群点判据模型的建立原则  / 245
9.7.3 离群点的常用检测方法  / 245
9.7.4 异常(故障)模式诊断  / 247

第10章 数据挖掘应用案例  / 251
10.1 材料基因组计划  / 252
10.1.1 材料基因组计划概要  / 252
10.1.2 神经网络模型预测晶体材料的形成能  / 255
10.1.3 基于关联规则模型的材料性能分析  / 255
10.2 化工系统的可靠性评价  / 257
10.2.1 化工系统可靠性评价指标  / 257
10.2.2 分析模型的建立  / 258
10.2.3 灰色关联分析  / 259
10.2.4 马尔可夫修正  / 260
10.3 煤化工产业链的协同机制与模型  / 261
10.3.1 基于社会网络分析法的供应链模型  / 262
10.3.2 基于工业代谢平衡的协同度评价  / 265
10.4 设备异常识别与预防性维修  / 267
10.4.1 模型的建立  / 267
10.4.2 设备异常识别案例  / 269
10.5 基于智能算法的软测量技术  / 272
10.5.1 软测量技术概述  / 272
10.5.2 软测量模型及基于软测量的异常诊断  / 273
10.5.3 粉料储罐料位的软测量模型  / 274

第11章 大数据可视化技术  / 276
11.1 数据可视化技术概述  / 277
11.1.1 数据可视化概念  / 277
11.1.2 数据可视化的基本要素和分类  / 277
11.1.3 可视化数据分类  / 279
11.1.4 数据可视化的层次  / 279
11.2 常用的数据可视化图形  / 280
11.2.1 常用三大图:柱(条)、线、饼(环)  / 280
11.2.2 面积图、雷达图、散点图、气泡图  / 283
11.2.3 地理图  / 284
11.2.4 矩形树图、日历图、桑基图、漏斗图、箱线图  / 285
11.2.5 词云、鱼骨图  / 287
11.2.6 数据可视化多图集合模式  / 287
11.3 常用的数据可视化工具  / 288

英文缩略词对照表  / 290

参考文献  / 294
化学工业出版社官方旗舰店店铺主页二维码
化学工业出版社官方旗舰店 微信公众号认证
扫描二维码,访问我们的微信店铺
随时随地的购物、客服咨询、查询订单和物流...

化学工业智能制造 互联化工 吉旭 化学工程与工艺 过程装备与控制工程 材料科学与工程 环境科学与工程等专业本科及研究生教材书籍

手机启动微信
扫一扫购买

收藏到微信 or 发给朋友

1. 打开微信,扫一扫左侧二维码

2. 点击右上角图标

点击右上角分享图标

3. 发送给朋友、分享到朋友圈、收藏

发送给朋友、分享到朋友圈、收藏

微信支付

支付宝

扫一扫购买

打开微信,扫一扫

或搜索微信号:cip1953
化学工业出版社官方微信公众号

收藏到微信 or 发给朋友

1. 打开微信,扫一扫左侧二维码

2. 点击右上角图标

点击右上角分享图标

3. 发送给朋友、分享到朋友圈、收藏

发送给朋友、分享到朋友圈、收藏