Spectroscopy and Spectral Technique(光谱学与光谱技术)
¥109.81
运费: | ¥ 0.00-18.00 |
商品详情
书名:Spectroscopy and Spectral Technique(光谱学与光谱技术)
定价:139.0
ISBN:9787030784650
版次:1
出版时间:2024-08
内容提要:
本书首先系统介绍了光谱学的基础概念,包括其起源与发展、原子和分子光谱。接着,详细探讨了11种典型的光谱技术,如激光诱导击穿光谱、拉曼光谱、红外光谱等,包括其原理、实验系统及前沿应用。随后,阐述了如何在材料、环境和工业生产等领域中结合应用多种光谱技术,以及其与单一技术相比的优势。本书还独特地介绍了基于机器学习的人工智能与光谱技术的结合应用。作为一大特色,结合…新科研成果,本书系统设计了多项光谱仿真实验项目。最后,本书展望了光谱学与光谱技术未来的发展趋势。
目录:
Contents
Chapter 1 Overview of Spectral Techniques 1
1.1 The Origin of Spectral Techniques 1
1.1.1 Spectrum and Spectroscopy 1
1.1.2 The History of Spectral Techniques 1
1.2 The Development of Spectroscopy Instruments 3
1.2.1 The Development of Spectroscopic Theory 3
1.2.2 The Advent of the Laser 4
1.2.3 Development of Spectrometers 5
1.3 Atomic Energy Levels and Atomic Spectrum 5
1.3.1 Atomic Energy Level 5
1.3.2 Atomic Emission Spectroscopy 6
1.3.3 Atomic Absorption Spectrum 8
1.4 Molecular Spectrum 9
1.4.1 Molecular Vibrational Energy Levels and Corresponding Spectral Techniques 10
1.4.2 Molecular Electrons Moving Energy Levels and Corresponding Spectral Techniques 11
References 12
Chapter 2 Laser-induced Breakdown Spectroscopy 15
2.1 Birth and Development of LIBS 15
2.2 Fundamentals of LIBS 17
2.2.1 Laser-induced Plasma 17
2.2.2 Local Thermodynamic Equilibrium 18
2.2.3 Plasma Temperature and Electron Number Density 19
2.2.4 Qualitative and Quantitative Analysis 20
2.3 Instrumentation for LIBS 21
2.3.1 LIBS Experimental Setup 21
2.3.2 Online/In Situ LIBS Instruments 22
2.3.3 Signal Enhancement for LIBS 23
2.4 LIBS Applications 25
2.4.1 Environmental Monitoring 25
2.4.2 Coal Analysis 27
2.4.3 Biomedicine 29
2.4.4 Agriculture and Food Safety 31
2.4.5 Space Exploration 32
2.4.6 Ocean Exploration 34
References 35
Chapter 3 Raman Spectroscopy Technology 41
3.1 Birth and Development of Raman Spectroscopy 41
3.1.1 The Great Founder 41
3.1.2 The Birth of Raman Spectroscopy Technology 41
3.1.3 The Development of Raman Spectroscopy Technology 42
3.2 Principle of Inelastic Scattering 42
3.2.1 Nonconservation of the Kinetic Energy of Particles 42
3.2.2 Elastic and Inelastic Scattering 43
3.2.3 Raman Scattering and Rayleigh Scattering 43
3.2.4 Stokes and Anti-Stokes Lines 46
3.3 Experimental Systems for Raman Spectroscopy 50
3.3.1 The Source and Splitting of the Light 50
3.3.2 Collection and Monitoring 53
3.4 Surface-Enhanced Raman Spectroscopy 54
3.4.1 Defects of Ordinary Raman Spectroscopy 54
3.4.2 Principles of Surface-Enhanced Raman Spectroscopy 55
3.5 Important Applications of Raman Spectroscopy 56
3.5.1 Spectral Fingerprint 56
3.5.2 Real-time Detection of Liquid Phase Raman Spectroscopy Experiment 59
3.5.3 Configuration Analysis of Raman 62
References 64
Chapter 4 Differential Optical Absorption Spectroscopy 68
4.1 Development of DOAS 68
4.1.1 Development of DO AS Abroad 68
4.1.2 Domestic DOAS Development 69
4.1.3 Opportunities and Challenges 70
4.2 Principle of DOAS 71
4.2.1 Lambert-Beer,s Law 71
4.2.2 Advantages of DOAS 72
4.3 Experimental System of DOAS 73
4.3.1 Active DOAS System 73
4.3.2 Passive DOAS System (MAX-DOAS) 74
4.4 DOAS for Multi-platform 75
4.4.1 D OAS for the Ground Platform 75
4.4.2 DOAS for Mobile Platforms 76
4.4.3 Multi-platform Joint Application 77
4.5 Important Applications of DOAS 77
4.5.1 The Global Ozone Monitoring Experiment (GOME) 77
4.5.2 Gaofen-5 Satellite and Atmospheric Pollution Component Inversion Method 78
4.5.3 Determination of Plume from the Pollution Source 78
4.5.4 Planar Array Measurements of Volcanic Plumes 79
4.5.5 Comprehensive Stereoscopic Observation Network 80
References 81
Chapter 5 Infrared Spectroscopy 86
5.1 Background Introduction of Infrared Spectroscopy 86
5.1.1 Infrared Radiation 86
5.1.2 IR Region 87
5.1.3 Development of IR Spectroscopy 87
5.2 Principle of IR Spectroscopy 87
5.2.1 Principle and Characteristics of IR Spectroscopy 87
5.2.2 Infrared Spectrometer 88
5.3 Fourier Transform Infrared Spectroscopy 89
5.3.1 Introduction to FTIR 89
5.3.2 Principle of FTIR Spectroscopy 89
5.4 Application of IR Spectroscopy 90
5.4.1 IR Spectroscopy and Environmental Monitoring 90
5.4.2 IR Spectroscopy and Food Detection 93
5.4.3 IR Spectroscopy and Microbiological Analyses 95
5.4.4 IR Spectroscopy and Agriculture 97
5.4.5 IR Spectroscopy and Forensic Analysis 100
References 104
Chapter 6 Laser-induced Fluorescence Spectroscopy 107
6.1 Introduction to Fluorescence Spectroscopy 107
6.1.1 The History of Fluorescence Spectroscopy 107
6.1.2 Characteristics of Fluorescence Spectroscopy 108
6.1.3 Traditional Fluorescence Spectroscopy and Laser-induced Fluorescence Spectroscopy 110
6.2 The Technical Basis of Laser-induced Fluorescence 111
6.2.1 The Principle of Laser-induced Fluorescence 111
6.2.2 Affected Factors of Fluorescence 113
6.2.3 The Development of LIF Technology 114
6.3 Experimental System of LIF Spectroscopy 115
6.3.1 Excitation Light Sources 115
6.3.2 Detector 116
6.4 Important Applications of LIF 117
6.4.1 On-line Detection of Carbon Isotopes Based on LIF Spectroscopy of CN Radicals 117
6.4.2 Applications of LIF in Soils and Sediments 122
References 122
Chapter 7 Ultraviolet-visible Absorption Spectroscopy 128
7.1 Introduction of UV-Vis Absorption Spectroscopy 128
7.2 Principles of UV-Vis Absorption Spectroscopy 128
7.2.1 Formation and Characteristics of UV-Vis Absorption Spectrum 128
7.2.2 Main Types of Electronic Transitions 130
7.2.3 Absorption Band 131
7.2.4 Lambert-Beer,s Law and Spectrophotometric Analysis 132
7.3 Experimental System for UV-Vis Absorption Spectroscopy 133
7.3.1 Common Laboratory UV-Vis Absorption Spectroscopy Experimental Systems 133
7.3.2 Common Portable UV-Vis Absorption Spectroscopy Instruments 135
7.4 Important Applications of UV-Vis Absorption Spectroscopy 136
7.4.1 Quantitative Analysis by UV-Vis Absorption Spectroscopy 136
7.4.2 Qualitative Analysis by UV-Vis Absorption Spectroscopy 137
7.4.3 The Applications of UV-Vis Absorption Spectroscopy in Some Fields 139
References 140
Chapter 8 Tunable Diode Laser Absorption Spectroscopy 142
8.1 Introduction of TDLAS 142
8.1.1 The Origin and Development of TDLAS 142
8.1.2 Fundamental Principle of TDLAS 143
8.2 Gas Detection Method and System 146
8.2.1 Direct Absorption Spectroscopy 146
8.2.2 Wavelength Modulation Spectroscopy 147
8.2.3 Frequency Modulated Spectroscopy 149
8.2.4 Trace Gas Telemetry System 149
8.3 Important Applications of TDLAS 151
8.3.1 Atmospheric Environment Monitoring 151
8.3.2 Combustion Flow Field Diagnosis 151
8.3.3 Breath Detection in Medicine 152
8.3.4 Application in an Industrial Process 154
References 154
Chapter 9 Photoacoustic Spectroscopy 161
9.1 Introduction to Photoacoustic Spectroscopy 161
9.1.1 History of Photo acoustic Spectroscopy 161
9.1.2 Current Status of Research on Photoacoustic Spectroscopy 161
9.2 Principles of Photoacoustic Spectroscopy and Experimental Systems 162
9.2.1 The Photo acoustic Effect 162
9.2.2 Photoacoustic Signal and Minimum Detectable Concentration 163
9.2.3 Experimental Systems 165
9.3 Applications of PAS 168
9.3.1 Photoacoustic Spectroscopy for Aerosol Characterization 168
9.3.2 Breath Ammonia Levels in a Normal Human Population Study as Determined by Photoacoustic Laser Spectroscopy 171
9.3.3 Non-Invasive Monitoring of Blood Glucose by Photoacoustic Spectroscopy 173
References 175
Chapter 10 Cavity Ring-Down Spectroscopy 178
10.1 The Development of Cavity Ring-Down Spectroscopy 178
10.1.1 Pulsed Cavity Ring-Down Spectroscopy and Its Development 180
10.1.2 Continuous Wave Cavity Ring-Down Spectroscopy and Its Development 181
10.1.3 Optical Fiber Cavity Ring-Down Spectroscopy and Its Development 183
10.2 The Principle and Experimental System of CRDS 184
10.2.1 The Principles of CRDS 184
10.2.2 CRDS Experimental System 187
10.3 Advanced Technology Based on CRDS 188
10.3.1 Optical Cavity-Based Advanced Techniques 188
vi | Spectroscopy and Spectral Technique
10.3.2 Optical Cavity-Based Hybrid Techniques 192
10.4 Important Applications of CRDS 198
10.4.1 Environmental Trace Analysis 198
10.4.2 Biomedical Applications 201
10.4.3 Combustion and Plasma Diagnostics 202
References 204
Chapter 11 X-ray Fluorescence Spectrometry 212
11.1 Introduction of X-ray 212
11.1.1 Discovery of X-ray 212
11.1.2 Generation Principle of X-ray 213
11.1.3 Interaction Effects Between X-ray and Matter 214
11.1.4 Representative Detecting Methods Based on X-ray 215
11.2 Principle of XRF and Experimental Setup 216
11.2.1 Characteristics and Advantages of XRF 216
11.2.2 WDXRF and EDXRF 217
11.2.3 Micro X-ray Fluorescence 218
11.2.4 Total Reflection X-ray Fluorescence 219
11.2.5 Qualitative and Quantitative X-ray Fluorescence Analysis 221
11.3 Significant Applications of XRF 222
11.3.1 XRF Applied in Environmental Detection 222
11.3.2 Classification of Species of Plants by XRF 224
11.3.3 Determining the Depth Distribution of Elements Using XRF 225
11.3.4 XRF Applied in Bio-medicine 227
References 229
Chapter 12 Hyperspectral Technology 231
12.1 Introduction to Hyperspectral Technology 231
12.1.1 The Birth of Hyperspectral Technology 231
12.1.2 Present Situation of Hyperspectral Technology 233
12.1.3 Development Prospect of Hyperspectral Technology 235
12.2 Principle and Experimental System of Hyperspectral Technology 236
12.2.1 Experimental Principle of Hyperspectral Technology .236
12.2.2 Introduction to the Experimental System of Hyperspectral Technology 238
12.2.3 Features and Advantages of Hyperspectral Technology 239
12.3 Application of Hyperspectral Technology 240
12.3.1 Application of Hyperspectral Technology in Agricultural Science 240
12.3.2 Application of Hyperspectral Technology in Food Safety 243
12.3.3 Application of Hyperspectral Technology in Biomedicine 246
12.3.4 Application of Hyperspectral Technology in the Military Field 248
References 248
Chapter 13 Spectral Fusion Technology and Application 252
13.1 LIBS and Raman Technologies 252
13.1.1 The Role of LIBS Technology and Raman Technology in the Application 252
13.1.2 Important Application Based on LIBS-Raman Technology 254
13.2 LIBS and LIF Technologies 261
13.2.1 The Role of LIBS Technology and LIF Technology in Application 261
13.2.2 Important Application Based on LIBS-LIF Technology 262
13.3 LIBS, Raman and IR Technologies 263
13.3.1 Advantages of Adding IR Technology to LIBS Raman Technology 263
13.3.2 Important Applications Based on LIBS, IR and Raman Technology 264
References 267
Chapter 14 Intelligent Spectrum Based on Machine Learning 270
14.1 Introduction of Machine Learning and Intelligent Spectrum 270
14.1.1 The Origin and Development of Machine Learning 270
14.1.2 Introduction of Machine Learning Algorithms Commonly Used 270
14.2 Laser-Induced Breakdown Spectroscopy (LIBS) and Machine
Learning 271
14.2.1 The Advantages of LIBS Combined with Machine Learning 271
14.2.2 Application of Machine Learning in LIBS 272
14.3 Infrared Spectroscopy (IR) and Machine Learning 279
14.3.1 The Advantages of IR Combined with Machine Learning 279
14.3.2 Application of Machine Learning in IR 280
14.4 Raman Spectroscopy and Machine Learning 285
14.4.1 The Advantages of Raman Spectroscopy Combined with Machine Learning 285
14.4.2 Application of Machine Learning in Raman Spectroscopy 286
14.5 Schematic of Hyperspectral Imaging (HSI) and Machine Learning 295
14.5.1 The Advantages of HSI Combined with Machine Learning 295
14.5.2 Application of Machine Learning in HSI 295
References 310
Chapter 15 Simulation Spectrum Teaching Experiments 312
15.1 Spectral Simulation Software (GaussView & Gaussian) 312
viii | Spectroscopy and Spectral Technique
15.1.1 Introduction of GaussView & Gaussian 312
15.1.2 Molecular Structure Modeling by GaussView 314
15.1.3 Molecular Structure Parameter Adjustment 320
15.1.4 Calculation Settings of Gaussian 324
15.2 IR Spectrum Simulation Experiment .330
15.2.1 Introduction to Infrared Spectroscopy (IR Spectrum) 330
15.2.2 The Establishment of Water and Ethanol Molecular Structure 330
15.2.3 Calculation Parameters Setup for IR Spectrum 334
15.2.4 IR Spectral Analysis Simulation 335
15.3 Raman Spectrum Simulation Experiment 338
15.3.1 Introduction to Raman Spectrum 338
15.3.2 The Establishment of Oxygen and Ozone Molecular Structure 339
15.3.3 Calculation Parameters Setup for Raman Spectrum 342
15.3.4 Raman Spectral Analysis Simulation 343
15.4 UV-Vis Spectrum Simulation Experiment 345
15.4.1 Introduction to UV-Vis Spectrum 345
15.4.2 The Establishment of Benzene and Ethylbenzene Molecular Structure 346
15.4.3 Calculation Parameters Setup for UV-Vis Spectrum 347
15.4.4 UV-Vis Spectral Analysis Simulation 348
15.5 Simulation of the External Electric Field of Ethylbenzene 350
15.5.1 Research Significance and Background 351
15.5.2 Theory and Computational Method 351
15.5.3 Method and Basis Set Selection of EB 352
15.5.4 Effect of Electric Field on Bond Length and Energy of the Molecule 353
15.5.5 Effect of Electric Field on Distribution of Molecular Orbital Energy Levels 354
15.5.6 Effect of Electric Field on Infrared Absorption Intensity 356
15.5.7 Extension of Related Research (1) Tunneling Ionization 357
15.5.8 Extension of Related Research (2) Potential Energy Surface Scanning 358
15.5.9 Research Conclusions 360
References 360
Postscript 363
定价:139.0
ISBN:9787030784650
版次:1
出版时间:2024-08
内容提要:
本书首先系统介绍了光谱学的基础概念,包括其起源与发展、原子和分子光谱。接着,详细探讨了11种典型的光谱技术,如激光诱导击穿光谱、拉曼光谱、红外光谱等,包括其原理、实验系统及前沿应用。随后,阐述了如何在材料、环境和工业生产等领域中结合应用多种光谱技术,以及其与单一技术相比的优势。本书还独特地介绍了基于机器学习的人工智能与光谱技术的结合应用。作为一大特色,结合…新科研成果,本书系统设计了多项光谱仿真实验项目。最后,本书展望了光谱学与光谱技术未来的发展趋势。
目录:
Contents
Chapter 1 Overview of Spectral Techniques 1
1.1 The Origin of Spectral Techniques 1
1.1.1 Spectrum and Spectroscopy 1
1.1.2 The History of Spectral Techniques 1
1.2 The Development of Spectroscopy Instruments 3
1.2.1 The Development of Spectroscopic Theory 3
1.2.2 The Advent of the Laser 4
1.2.3 Development of Spectrometers 5
1.3 Atomic Energy Levels and Atomic Spectrum 5
1.3.1 Atomic Energy Level 5
1.3.2 Atomic Emission Spectroscopy 6
1.3.3 Atomic Absorption Spectrum 8
1.4 Molecular Spectrum 9
1.4.1 Molecular Vibrational Energy Levels and Corresponding Spectral Techniques 10
1.4.2 Molecular Electrons Moving Energy Levels and Corresponding Spectral Techniques 11
References 12
Chapter 2 Laser-induced Breakdown Spectroscopy 15
2.1 Birth and Development of LIBS 15
2.2 Fundamentals of LIBS 17
2.2.1 Laser-induced Plasma 17
2.2.2 Local Thermodynamic Equilibrium 18
2.2.3 Plasma Temperature and Electron Number Density 19
2.2.4 Qualitative and Quantitative Analysis 20
2.3 Instrumentation for LIBS 21
2.3.1 LIBS Experimental Setup 21
2.3.2 Online/In Situ LIBS Instruments 22
2.3.3 Signal Enhancement for LIBS 23
2.4 LIBS Applications 25
2.4.1 Environmental Monitoring 25
2.4.2 Coal Analysis 27
2.4.3 Biomedicine 29
2.4.4 Agriculture and Food Safety 31
2.4.5 Space Exploration 32
2.4.6 Ocean Exploration 34
References 35
Chapter 3 Raman Spectroscopy Technology 41
3.1 Birth and Development of Raman Spectroscopy 41
3.1.1 The Great Founder 41
3.1.2 The Birth of Raman Spectroscopy Technology 41
3.1.3 The Development of Raman Spectroscopy Technology 42
3.2 Principle of Inelastic Scattering 42
3.2.1 Nonconservation of the Kinetic Energy of Particles 42
3.2.2 Elastic and Inelastic Scattering 43
3.2.3 Raman Scattering and Rayleigh Scattering 43
3.2.4 Stokes and Anti-Stokes Lines 46
3.3 Experimental Systems for Raman Spectroscopy 50
3.3.1 The Source and Splitting of the Light 50
3.3.2 Collection and Monitoring 53
3.4 Surface-Enhanced Raman Spectroscopy 54
3.4.1 Defects of Ordinary Raman Spectroscopy 54
3.4.2 Principles of Surface-Enhanced Raman Spectroscopy 55
3.5 Important Applications of Raman Spectroscopy 56
3.5.1 Spectral Fingerprint 56
3.5.2 Real-time Detection of Liquid Phase Raman Spectroscopy Experiment 59
3.5.3 Configuration Analysis of Raman 62
References 64
Chapter 4 Differential Optical Absorption Spectroscopy 68
4.1 Development of DOAS 68
4.1.1 Development of DO AS Abroad 68
4.1.2 Domestic DOAS Development 69
4.1.3 Opportunities and Challenges 70
4.2 Principle of DOAS 71
4.2.1 Lambert-Beer,s Law 71
4.2.2 Advantages of DOAS 72
4.3 Experimental System of DOAS 73
4.3.1 Active DOAS System 73
4.3.2 Passive DOAS System (MAX-DOAS) 74
4.4 DOAS for Multi-platform 75
4.4.1 D OAS for the Ground Platform 75
4.4.2 DOAS for Mobile Platforms 76
4.4.3 Multi-platform Joint Application 77
4.5 Important Applications of DOAS 77
4.5.1 The Global Ozone Monitoring Experiment (GOME) 77
4.5.2 Gaofen-5 Satellite and Atmospheric Pollution Component Inversion Method 78
4.5.3 Determination of Plume from the Pollution Source 78
4.5.4 Planar Array Measurements of Volcanic Plumes 79
4.5.5 Comprehensive Stereoscopic Observation Network 80
References 81
Chapter 5 Infrared Spectroscopy 86
5.1 Background Introduction of Infrared Spectroscopy 86
5.1.1 Infrared Radiation 86
5.1.2 IR Region 87
5.1.3 Development of IR Spectroscopy 87
5.2 Principle of IR Spectroscopy 87
5.2.1 Principle and Characteristics of IR Spectroscopy 87
5.2.2 Infrared Spectrometer 88
5.3 Fourier Transform Infrared Spectroscopy 89
5.3.1 Introduction to FTIR 89
5.3.2 Principle of FTIR Spectroscopy 89
5.4 Application of IR Spectroscopy 90
5.4.1 IR Spectroscopy and Environmental Monitoring 90
5.4.2 IR Spectroscopy and Food Detection 93
5.4.3 IR Spectroscopy and Microbiological Analyses 95
5.4.4 IR Spectroscopy and Agriculture 97
5.4.5 IR Spectroscopy and Forensic Analysis 100
References 104
Chapter 6 Laser-induced Fluorescence Spectroscopy 107
6.1 Introduction to Fluorescence Spectroscopy 107
6.1.1 The History of Fluorescence Spectroscopy 107
6.1.2 Characteristics of Fluorescence Spectroscopy 108
6.1.3 Traditional Fluorescence Spectroscopy and Laser-induced Fluorescence Spectroscopy 110
6.2 The Technical Basis of Laser-induced Fluorescence 111
6.2.1 The Principle of Laser-induced Fluorescence 111
6.2.2 Affected Factors of Fluorescence 113
6.2.3 The Development of LIF Technology 114
6.3 Experimental System of LIF Spectroscopy 115
6.3.1 Excitation Light Sources 115
6.3.2 Detector 116
6.4 Important Applications of LIF 117
6.4.1 On-line Detection of Carbon Isotopes Based on LIF Spectroscopy of CN Radicals 117
6.4.2 Applications of LIF in Soils and Sediments 122
References 122
Chapter 7 Ultraviolet-visible Absorption Spectroscopy 128
7.1 Introduction of UV-Vis Absorption Spectroscopy 128
7.2 Principles of UV-Vis Absorption Spectroscopy 128
7.2.1 Formation and Characteristics of UV-Vis Absorption Spectrum 128
7.2.2 Main Types of Electronic Transitions 130
7.2.3 Absorption Band 131
7.2.4 Lambert-Beer,s Law and Spectrophotometric Analysis 132
7.3 Experimental System for UV-Vis Absorption Spectroscopy 133
7.3.1 Common Laboratory UV-Vis Absorption Spectroscopy Experimental Systems 133
7.3.2 Common Portable UV-Vis Absorption Spectroscopy Instruments 135
7.4 Important Applications of UV-Vis Absorption Spectroscopy 136
7.4.1 Quantitative Analysis by UV-Vis Absorption Spectroscopy 136
7.4.2 Qualitative Analysis by UV-Vis Absorption Spectroscopy 137
7.4.3 The Applications of UV-Vis Absorption Spectroscopy in Some Fields 139
References 140
Chapter 8 Tunable Diode Laser Absorption Spectroscopy 142
8.1 Introduction of TDLAS 142
8.1.1 The Origin and Development of TDLAS 142
8.1.2 Fundamental Principle of TDLAS 143
8.2 Gas Detection Method and System 146
8.2.1 Direct Absorption Spectroscopy 146
8.2.2 Wavelength Modulation Spectroscopy 147
8.2.3 Frequency Modulated Spectroscopy 149
8.2.4 Trace Gas Telemetry System 149
8.3 Important Applications of TDLAS 151
8.3.1 Atmospheric Environment Monitoring 151
8.3.2 Combustion Flow Field Diagnosis 151
8.3.3 Breath Detection in Medicine 152
8.3.4 Application in an Industrial Process 154
References 154
Chapter 9 Photoacoustic Spectroscopy 161
9.1 Introduction to Photoacoustic Spectroscopy 161
9.1.1 History of Photo acoustic Spectroscopy 161
9.1.2 Current Status of Research on Photoacoustic Spectroscopy 161
9.2 Principles of Photoacoustic Spectroscopy and Experimental Systems 162
9.2.1 The Photo acoustic Effect 162
9.2.2 Photoacoustic Signal and Minimum Detectable Concentration 163
9.2.3 Experimental Systems 165
9.3 Applications of PAS 168
9.3.1 Photoacoustic Spectroscopy for Aerosol Characterization 168
9.3.2 Breath Ammonia Levels in a Normal Human Population Study as Determined by Photoacoustic Laser Spectroscopy 171
9.3.3 Non-Invasive Monitoring of Blood Glucose by Photoacoustic Spectroscopy 173
References 175
Chapter 10 Cavity Ring-Down Spectroscopy 178
10.1 The Development of Cavity Ring-Down Spectroscopy 178
10.1.1 Pulsed Cavity Ring-Down Spectroscopy and Its Development 180
10.1.2 Continuous Wave Cavity Ring-Down Spectroscopy and Its Development 181
10.1.3 Optical Fiber Cavity Ring-Down Spectroscopy and Its Development 183
10.2 The Principle and Experimental System of CRDS 184
10.2.1 The Principles of CRDS 184
10.2.2 CRDS Experimental System 187
10.3 Advanced Technology Based on CRDS 188
10.3.1 Optical Cavity-Based Advanced Techniques 188
vi | Spectroscopy and Spectral Technique
10.3.2 Optical Cavity-Based Hybrid Techniques 192
10.4 Important Applications of CRDS 198
10.4.1 Environmental Trace Analysis 198
10.4.2 Biomedical Applications 201
10.4.3 Combustion and Plasma Diagnostics 202
References 204
Chapter 11 X-ray Fluorescence Spectrometry 212
11.1 Introduction of X-ray 212
11.1.1 Discovery of X-ray 212
11.1.2 Generation Principle of X-ray 213
11.1.3 Interaction Effects Between X-ray and Matter 214
11.1.4 Representative Detecting Methods Based on X-ray 215
11.2 Principle of XRF and Experimental Setup 216
11.2.1 Characteristics and Advantages of XRF 216
11.2.2 WDXRF and EDXRF 217
11.2.3 Micro X-ray Fluorescence 218
11.2.4 Total Reflection X-ray Fluorescence 219
11.2.5 Qualitative and Quantitative X-ray Fluorescence Analysis 221
11.3 Significant Applications of XRF 222
11.3.1 XRF Applied in Environmental Detection 222
11.3.2 Classification of Species of Plants by XRF 224
11.3.3 Determining the Depth Distribution of Elements Using XRF 225
11.3.4 XRF Applied in Bio-medicine 227
References 229
Chapter 12 Hyperspectral Technology 231
12.1 Introduction to Hyperspectral Technology 231
12.1.1 The Birth of Hyperspectral Technology 231
12.1.2 Present Situation of Hyperspectral Technology 233
12.1.3 Development Prospect of Hyperspectral Technology 235
12.2 Principle and Experimental System of Hyperspectral Technology 236
12.2.1 Experimental Principle of Hyperspectral Technology .236
12.2.2 Introduction to the Experimental System of Hyperspectral Technology 238
12.2.3 Features and Advantages of Hyperspectral Technology 239
12.3 Application of Hyperspectral Technology 240
12.3.1 Application of Hyperspectral Technology in Agricultural Science 240
12.3.2 Application of Hyperspectral Technology in Food Safety 243
12.3.3 Application of Hyperspectral Technology in Biomedicine 246
12.3.4 Application of Hyperspectral Technology in the Military Field 248
References 248
Chapter 13 Spectral Fusion Technology and Application 252
13.1 LIBS and Raman Technologies 252
13.1.1 The Role of LIBS Technology and Raman Technology in the Application 252
13.1.2 Important Application Based on LIBS-Raman Technology 254
13.2 LIBS and LIF Technologies 261
13.2.1 The Role of LIBS Technology and LIF Technology in Application 261
13.2.2 Important Application Based on LIBS-LIF Technology 262
13.3 LIBS, Raman and IR Technologies 263
13.3.1 Advantages of Adding IR Technology to LIBS Raman Technology 263
13.3.2 Important Applications Based on LIBS, IR and Raman Technology 264
References 267
Chapter 14 Intelligent Spectrum Based on Machine Learning 270
14.1 Introduction of Machine Learning and Intelligent Spectrum 270
14.1.1 The Origin and Development of Machine Learning 270
14.1.2 Introduction of Machine Learning Algorithms Commonly Used 270
14.2 Laser-Induced Breakdown Spectroscopy (LIBS) and Machine
Learning 271
14.2.1 The Advantages of LIBS Combined with Machine Learning 271
14.2.2 Application of Machine Learning in LIBS 272
14.3 Infrared Spectroscopy (IR) and Machine Learning 279
14.3.1 The Advantages of IR Combined with Machine Learning 279
14.3.2 Application of Machine Learning in IR 280
14.4 Raman Spectroscopy and Machine Learning 285
14.4.1 The Advantages of Raman Spectroscopy Combined with Machine Learning 285
14.4.2 Application of Machine Learning in Raman Spectroscopy 286
14.5 Schematic of Hyperspectral Imaging (HSI) and Machine Learning 295
14.5.1 The Advantages of HSI Combined with Machine Learning 295
14.5.2 Application of Machine Learning in HSI 295
References 310
Chapter 15 Simulation Spectrum Teaching Experiments 312
15.1 Spectral Simulation Software (GaussView & Gaussian) 312
viii | Spectroscopy and Spectral Technique
15.1.1 Introduction of GaussView & Gaussian 312
15.1.2 Molecular Structure Modeling by GaussView 314
15.1.3 Molecular Structure Parameter Adjustment 320
15.1.4 Calculation Settings of Gaussian 324
15.2 IR Spectrum Simulation Experiment .330
15.2.1 Introduction to Infrared Spectroscopy (IR Spectrum) 330
15.2.2 The Establishment of Water and Ethanol Molecular Structure 330
15.2.3 Calculation Parameters Setup for IR Spectrum 334
15.2.4 IR Spectral Analysis Simulation 335
15.3 Raman Spectrum Simulation Experiment 338
15.3.1 Introduction to Raman Spectrum 338
15.3.2 The Establishment of Oxygen and Ozone Molecular Structure 339
15.3.3 Calculation Parameters Setup for Raman Spectrum 342
15.3.4 Raman Spectral Analysis Simulation 343
15.4 UV-Vis Spectrum Simulation Experiment 345
15.4.1 Introduction to UV-Vis Spectrum 345
15.4.2 The Establishment of Benzene and Ethylbenzene Molecular Structure 346
15.4.3 Calculation Parameters Setup for UV-Vis Spectrum 347
15.4.4 UV-Vis Spectral Analysis Simulation 348
15.5 Simulation of the External Electric Field of Ethylbenzene 350
15.5.1 Research Significance and Background 351
15.5.2 Theory and Computational Method 351
15.5.3 Method and Basis Set Selection of EB 352
15.5.4 Effect of Electric Field on Bond Length and Energy of the Molecule 353
15.5.5 Effect of Electric Field on Distribution of Molecular Orbital Energy Levels 354
15.5.6 Effect of Electric Field on Infrared Absorption Intensity 356
15.5.7 Extension of Related Research (1) Tunneling Ionization 357
15.5.8 Extension of Related Research (2) Potential Energy Surface Scanning 358
15.5.9 Research Conclusions 360
References 360
Postscript 363
- 科学出版社旗舰店 (微信公众号认证)
- 科学出版社秉承多年来形成的“高层次、高水平、高质量”和“严肃、严密、严格”的优良传统与作风,始终坚持为科技创新服务、为传播与普及科学知识服务、为科学家和广大读者服务的宗旨。
- 扫描二维码,访问我们的微信店铺
- 随时随地的购物、客服咨询、查询订单和物流...