商品详情
书名:Python深度学习:基于TensorFlow 第2版
定价:99.0
ISBN:9787111712244
作者:吴茂贵
版次:2
内容提要:
1.内容选择?:提供全栈式的解决方案<br />深度学习涉及范围比较广,既有对基础、原理的要求,也有对代码实现的要求。如何在较短时间内快速提高深度学习的水平?如何尽快把所学运用到实践中?这方面虽然没有捷径可言,但却有方法可循。本书基于这些考量,希望能给你提供一站式解决方案。具体内容包括?:机器学习与深度学习的三大基石(线性代数、概率与信息论及数值分析)?;机器学习与深度学习的基本理论和原理?;机器学习与深度学习的常用开发工具(Python、TensorFlow、Keras等)?;TensorFlow的高级封装及多个综合性实战项目等。<br />2.层次安排?:找准易撕口,快速实现由点到面的突破<br />我们打开塑料袋时,一般从易撕口开始,这样即使再牢固的袋子也很容易打开。面对深度学习这个“牢固袋子”,我们也可以采用类似方法,找准易撕口。如果没有,就创造一个易撕口,并通过这个易撕口,实现点到面的快速扩展。本书在面对很多抽象、深奥的算法时均采用了这种方法。我们知道BP算法、循环神经网络是深度学习中的两块“硬骨头”,所以我们在介绍BP算法时,先介绍单个神经如何实现BP算法这个易撕口,再延伸到一般情况?;在介绍循环神经网络时,我们也先以一个简单实例为易撕口,再延伸到一般情况。希望这种方式能帮助你把难题化易,把大事化小,把不可能转换为可能。<br />3.表达形式?:让图说话,一张好图胜过千言万语<br />机器学习、深度学习中有很多抽象的概念、复杂的算法、深奥的理论,如NumPy的广播机制、梯度下降对学习率敏感、神经网络中的共享参数、动量优化法、梯度消失或爆炸等,这些内容如果只用文字来描述,可能很难达到让人茅塞顿开的效果,但如果用一些图来展现,再加上适当的文字说明,往往能取得非常好的效果,正所谓一张好图胜过千言万语。<br />除了以上谈到的三个方面,为了帮助大家更好地理解,更快地掌握机器学习、深度学习这些人工智能的核心内容,本书还包含了其他方法,相信阅读本书的读者都能体会到。我们希望通过这些方法或方式带给你不一样的理解和体验,使你感到抽象数学不抽象、深度学习不深奥、复杂算法不复杂、难学的深度学习也易学,这也是我们写这本书的主要目的。<br />至于人工智能(AI)的重要性,想必就不用多说了。如果说2016年前属于摆事实论证阶段,那么2016年后已进入事实胜于雄辩阶段了,而2018年后应该撸起袖子加油干了。目前各行各业都忙于AI+,给人“忽如一夜春风来,千树万树梨花开”的感觉!
目录:
第2版前言
第1版前言
第一部分 TensorFlow基础
第1章 NumPy基础 2
1.1 把图像数字化 3
1.1.1 数组属性 4
1.1.2 从已有数据中生成数组 4
1.1.3 利用 random 模块生成
数组 5
1.1.4 利用 arange、linspace
函数生成数组 7
1.2 存取元素 8
1.3 NumPy的算术运算 9
1.3.1 对应元素相乘 10
1.3.2 点积运算 11
1.4 数据变形 12
1.4.1 更改数组的形状 12
1.4.2 合并数组 15
1.5 通用函数 18
1.6 广播机制 20
1.7 用NumPy实现回归实例 21
1.8 小结 24
第2章 TensorFlow基础知识 25
2.1 安装配置 25
2.1.1 安装Anaconda 26
2.1.2 安装TensorFlow
CPU版 26
2.1.3 安装TensorFlow
GPU版 27
2.2 层次架构 29
2.3 张量 30
2.3.1 张量的基本属性 30
2.3.2 张量切片 31
2.3.3 操作形状 32
2.4 变量 33
2.5 NumPy与tf.Tensor比较 35
2.6 计算图 36
2.6.1 静态计算图 36
2.6.2 动态计算图 37
2.7 自动图 38
2.8 自动微分 39
2.9 损失函数 42
2.10 优化器 43
2.11 使用TensorFlow 2.0实现回归
实例 43
2.12 GPU加速 48
2.13 小结 50
第3章 TensorFlow构建模型的方法 51
3.1 利用低阶API构建模型 51
3.1.1 项目背景 51
3.1.2 导入数据 52
3.1.3 预处理数据 53
3.1.4 构建模型 55
3.1.5 训练模型 56
3.1.6 测试模型 57
3.1.7 保存恢复模型 57
3.2 利用中阶API构建模型 58
3.2.1 构建模型 58
3.2.2 创建损失评估函数 59
3.2.3 训练模型 59
3.3 利用高阶API构建模型 61
3.3.1 构建模型 61
3.3.2 编译及训练模型 63
3.3.3 测试模型 64
3.3.4 保存恢复模型 64
3.4 小结 65
第4章 TensorFlow数据处理 66
4.1 tf.data简介 66
4.2 构建数据集的常用方法 67
4.2.1 从内存中读取数据 68
4.2.2 从文本中读取数据 68
4.2.3 读取TFRecord格式
文件 70
4.3 如何生成自己的TFRecord格式
数据 70
4.3.1 把数据转换为TFRecord
格式的一般步骤 70
4.3.2 加载TFRecord文件
流程 72
4.3.3 代码实现 72
4.4 数据增强方法 75
4.4.1 常用的数据增强方法 75
4.4.2 创建数据处理流水线 77
4.5 小结 78
第5章 可视化 79
5.1 matplotlib 79
- 机械工业出版社旗舰店 (微信公众号认证)
- 扫描二维码,访问我们的微信店铺
- 随时随地的购物、客服咨询、查询订单和物流...