商品详情
定价:128.0
ISBN:9787122261441
作者:卢小泉,王雪梅,郭惠霞,杜捷 编著
版次:1
出版时间:2016-10
内容提要:

商品名称: |
生物电化学 |
营销书名: |
总结作者十几年的科研与教学成果,展示国内外同行的研究成果,展望未来科研与应用趋势 |
作者: |
卢小泉、王雪梅、郭惠霞、杜捷 编著 |
定价: |
128.00 |
本店价格: |
|
折扣: |
|
ISBN: |
978-7-122-26144-1 |
关键字: |
化学;电化学;电化学分析仪器;电化学传感器;自组装膜; |
重量: |
716克 |
出版社: |
化学工业出版社 |
开本: |
16 |
装帧: |
精 |
出版时间: |
2016年10月 |
版次: |
1 |
页码: |
374 |
印次: |
1 |

1.“十二五”国家重点图书;
2.化学工业出版社出版基金资助出版;
3.本书主编长期从事电化学及电分析化学的教学及科研工作,参加和主持多项国家、省部级科研项目,先后在国内外学术刊物上发表论文近100余篇,多次获省部级以上科学技术奖。
4.本书遵循“加强基础,趋向前沿,反映现代,注意交叉”的编写原则,总结了生物电化学研究基础、常用方法及国内外前沿进展。

本书在编写过程中努力遵循“加强基础,趋向前沿,反映现代,注意交叉”的现代学科建设理念,从生物电现象及其研究范围、应用现状涉及的电化学基础知识出发,总结了现代生物电化学研究常用方法的基本原理。全书主要内容包括生物电化学基础、生物电现象及酶、微生物、DNA及免疫电化学生物传感器、生物环境、氧化还原自组装膜界面电子转移研究、数理基础、技术基础、生物电化学的研究领域、进展与应用。
本书可供化学、生命科学、环境科学及材料科学等相关领域科研人员阅读参考,也可作为高等院校相关专业的教学用书。

卢小泉,教授,博导,长期从事电化学及电分析化学的教学及科研工作.参加和主持多项国家、省部级科研项目,先后在国内外学术刊物上发表论文近100余篇,鉴定成果4项。荣获2012年度“长江学者奖励计划”特聘教授,入选甘肃省“555创新人才工程”,获得教育部第四届高校青年教师奖、中国化学会全国青年化学奖、甘肃省杰青、甘肃省青年科技创新杰出奖、甘肃省第六届青年成才奖、兰州市首届青年科技奖等,多次获甘肃省科学技术(自然科学)二等奖和甘肃省高校科技进步一等奖。

第1章绪论
1.1生物电现象1
1.2生物电化学及其研究范畴4
1.3生物电化学的应用现状及展望9
参考文献10
第2章电化学理论基础
2.1电极反应与电极电势12
2.1.1电极12
2.1.2电极反应13
2.1.3电极电势14
2.1.4液接界电势16
2.2双电层17
2.2.1电极/溶液界面的性质及其研究方法17
2.2.2双电层的结构20
2.3电化学过程热力学22
2.3.1Gibbs自由能变与电动势22
2.3.2可逆电化学过程热力学23
2.3.3不可逆及准可逆电化学过程热力学25
2.4电极反应动力学25
2.4.1动力学基本理论25
2.4.2电极过程的ButlerVolmer模型27
2.4.3标准速率常数和传递系数29
2.4.4交换电流密度30
2.4.5多电子步骤机理31
2.5电极体系中的传质过程32
2.5.1物质传递的形成32
2.5.2物质传递普遍方程的推导34
2.5.3扩散36
2.6电极过程动力学44
2.6.1过电势公式44
2.6.2复杂电极过程47
参考文献50
第3章电化学技术基础
3.1电化学测量体系组成52
3.1.1三电极体系52
3.1.2电解质溶液53
3.1.3隔膜54
3.1.4盐桥54
3.1.5鲁金毛细管55
3.1.6电解池58
3.2稳态测量技术61
3.2.1稳态过程61
3.2.2恒电流稳态与恒电势稳态测量62
3.2.3稳态极化曲线的测定65
3.3暂态测量技术67
3.3.1暂态过程67
3.3.2控制电流暂态测量技术68
3.3.3常见的阶跃电流波形69
3.3.4控制电流技术的应用70
3.3.5控制电势暂态测量技术72
3.4线性电势扫描伏安技术75
3.4.1线性电势扫描过程中相应电流的特点75
3.4.2电化学极化下的动电势扫描法76
3.4.3循环伏安法77
3.4.4薄层伏安法80
3.4.5大幅度线性电势扫描法的特点与应用80
3.5脉冲伏安技术81
3.5.1常规脉冲伏安法82
3.5.2微分脉冲极谱法83
3.5.3脉冲极谱的充电电流和毛细管噪声电流84
3.5.4差示脉冲伏安法85
3.5.5旋转电极脉冲伏安法85
3.5.6方波伏安法86
3.5.7脉冲伏安法的应用87
3.6电化学阻抗谱技术88
3.6.1电化学阻抗谱的基础知识90
3.6.2复合元件的阻纳93
3.6.3电极过程的等效电路99
3.6.4电化学阻抗谱的测量技术101
3.7电化学噪声技术103
3.7.1电化学噪声分类104
3.7.2电化学噪声测定105
3.7.3电化学噪声分析107
参考文献110
第4章环境与生物电化学
4.1生物电化学系统115
4.1.1BES的基本工作原理116
4.1.2BES的产电过程119
4.1.3生物质能源的产生120
4.2微生物燃料电池125
4.2.1微生物燃料电池的发展历史126
4.2.2微生物燃料电池的分类127
4.2.3微生物燃料电池的优点133
4.2.4微生物燃料电池存在的问题134
4.2.5微生物燃料电池的应用前景136
4.3微生物电解电池138
4.3.1微生物电解电池与微生物燃料电池的差异138
4.3.2微生物电解电池的优点139
4.3.3微生物电解电池的局限性139
4.3.4微生物电解电池的研究现状140
4.4生物电化学与环境监测141
4.4.1生物电化学传感器与环境监测141
4.4.2生物芯片与环境监测146
4.4.3生物电化学反应器与环境监测147
4.4.4生物电化学的发展方向147
参考文献147
第5章电化学联用技术
5.1光谱电化学技术154
5.1.1现场光谱电化学技术155
5.1.2非现场光谱技术165
5.1.3现场显微技术168
5.2电致化学发光技术168
5.2.1电致化学发光的特点169
5.2.2电致化学发光的仪器结构169
5.2.3电致化学发光的基本反应机理171
5.2.4电致化学发光的基本类型172
5.2.5电致化学发光的应用175
5.3扫描电化学显微镜179
5.3.1SECM简介179
5.3.2SECM的实验装置179
5.3.3SECM的工作模式181
5.3.4SECM的定量分析理论186
5.3.5SECM的应用186
5.3.6SECM的展望189
5.4电化学石英晶体微天平189
5.4.1石英晶体微天平的基本原理190
5.4.2电化学石英晶体微天平的应用191
5.5其他一些联用技术193
5.5.1SECM和其他技术联用193
5.5.2压电、红外光谱、电化学三维联用技术194
5.5.3电化学表面等离子体波共振技术195
5.5.4磁共振方法196
参考文献198
第6章电化学酶传感器
6.1酶的化学本质及其组成202
6.1.1酶的化学本质203
6.1.2酶的组成203
6.1.3酶的特点204
6.2酶促反应的电化学研究205
6.2.1酶促反应的特点205
6.2.2酶促反应的影响因素206
6.3酶电化学生物传感器207
6.3.1酶电化学生物传感器的工作原理207
6.3.2酶电化学生物传感器的分类208
6.3.3酶在电极上的固定化方法210
6.3.4酶传感器的应用现状212
6.3.5酶传感器的未来发展趋势215
6.4酶基生物燃料电池215
6.4.1酶基生物燃料电池的电极215
6.4.2酶电极的分类216
6.4.3酶的活性中心218
6.4.4外场对酶的影响219
6.4.5催化机理227
6.4.6酶电极的局限性227
参考文献228
第7章电化学微生物传感器和DNA传感器
7.1微生物固定化技术235
7.1.1吸附法236
7.1.2包埋法237
7.1.3交联法241
7.1.4微生物固定中的纳米材料242
7.2呼吸型电化学微生物传感器246
7.3代谢型电化学微生物传感器248
7.4中介型电化学微生物传感器249
7.5电化学微生物传感器的换频方式249
7.5.1电流型微生物传感器250
7.5.2电位型微生物传感器251
7.5.3电导型微生物传感器252
7.5.4微生物燃料电池型传感器253
7.6电化学微生物传感器的应用255
7.6.1在食品和发酵中的应用255
7.6.2环境监测256
参考文献256
第8章电化学核酸传感器
8.1核酸探针264
8.1.1核酸简介264
8.1.2核酸杂交探针266
8.1.3核酸适配子268
8.1.4Gquadruplex核酸探针272
8.2核酸探针在电极表面的固定方法273
8.2.1吸附固定273
8.2.2自组装274
8.2.3共价键合法275
8.2.4生物素亲和素结合法275
8.3电化学核酸传感器的信号检出276
8.3.1基于电化学活性指示剂的杂交检测276
8.3.2基于酶联反应的信号放大检测277
8.3.3基于纳米材料的信号检测278
8.3.4基于核酸体外扩增技术的信号放大检测281
8.4电化学核酸传感器的应用和发展趋势283
参考文献285
第9章电化学免疫型传感器
9.1电化学免疫分析291
9.2电化学免疫传感器293
9.2.1电化学免疫传感器的原理293
9.2.2电化学免疫传感器的分类294
9.2.3电化学免疫传感器中抗原抗体固定方法296
9.2.4电化学免疫传感器的表征302
9.2.5电化学免疫传感器的再生及更新302
9.2.6电化学免疫传感器的信号增强303
9.2.7电化学免疫传感器的应用317
9.3电化学酶联免疫分析320
9.3.1酶联免疫分析方法的基本原理321
9.3.2酶联免疫分析方法的常见类型321
9.4电化学酶联免疫传感器325
9.4.1电化学酶联免疫传感器的基本原理325
9.4.2电化学酶联免疫传感器的种类325
9.4.3电化学酶联免疫传感器的应用327
9.4.4电化学酶联免疫传感器的前景328
参考文献328
第10章氧化还原自组装膜界面电子转移研究
10.1氧化还原自组装膜电子传递研究的电化学分析方法338
10.1.1自组装膜338
10.1.2自组装膜电子传递研究的电化学分析方法340
10.1.3自组装膜长程电子转移的影响因素342
10.2自组装膜上的KET电化学测量的氧化还原体系343
10.2.1自组装膜长程电子转移理论简介344
10.2.2标准速率常数ks的理论计算公式345
10.2.3氧化还原体系K3Fe(CN)6-K4Fe(CN)6和亚甲基蓝-无色亚甲基蓝的电子转移速率常数的测定347
10.3ET动力学的微观效应351
10.3.1电子转移机理的基本概念351
10.3.2ET动力学352
10.3.3ET的微观理论353
10.4氧化还原自组装单层膜的结构354
10.5卟啉自组装膜电化学355
10.5.1卟啉自组装膜的制备355
10.5.2基于金属卟啉轴向配位的自组装研究358
10.6SECM表征卟啉自组装膜在金电极上的成膜过程361
10.6.1H2MPTPP修饰电极的循环伏安表征361
10.6.2表征卟啉自组装膜在金电极上的成膜过程363
10.6.3卟啉自组装单分子膜长程电子转移过程的SECM的研究366
10.6.4巯基卟啉在金电极表面自组装过程中的分子定位366
参考文献368
索引371

《电化学丛书》的策划与出版,可以说是电化学科学大好发展形势下的“有识之举”,其中包括如下两个方面的意义。
首先,从基础学科的发展看,电化学一般被认为是隶属物理化学(二级学科)的一门三级学科,其发展重点往往从属物理化学的发展重点。例如,电化学发展早期从属原子分子学说的发展(如法拉第定律和电化学当量);19世纪起则依附化学热力学的发展而着重电化学热力学的发展(如能斯特公式和电解质理论)。20世纪40年代后,“电极过程动力学”异军突起,曾领风骚四五十年。约从20世纪80年代起,形势又有新的变化:一方面是固体物理理论和第一性原理计算方法的更广泛应用与取得实用性成果;另一方面是对具有各种特殊功能的新材料的迫切要求与大量新材料的制备合成。一门以综合材料学基本理论、实验方法与计算方法为基础的电化学新学科似乎正在形成。在《电化学丛书》的选题中,显然也反映了这一重大形势发展。
其次,电化学从诞生初期起就是一门与实际紧密结合的学科,这一学科在解决当代人类持续性发展“世纪性难题”(能源与环境)征途中重要性位置的提升和受到期待之热切,的确令人印象深刻。可以不夸张地说,从历史发展看,电化学当今所受到的重视是空前的。探讨如何利用这一大好形势发展电化学在各方面的应用,以及结合应用研究发展学科,应该是《电化学丛书》不容推脱的任务。另一方面,尽管形势大好,我仍然期望各位编委在介绍和讨论发展电化学科学和技术以解决人类持续发展难题时,要有大家风度,即对电化学科学和技术的优点、特点、难点和缺点的介绍要“面面俱到”,切不可“卖瓜的只说瓜甜”,反而贻笑大方。
《电化学丛书》的编撰和发行还反映了电化学科学发展形势大好的另一重要方面,即我国电化学人才发展之兴旺。丛书各分册均由该领域学有专攻的科学家执笔。可以期望:各分册将不仅能在较高水平上梳理各分支学科的框架与发展,同时也将提供较系统的材料,供读者了解我国学者的工作与取得的成就。
总之,我热切希望《电化学丛书》的策划与出版将使我国电化学科学书籍跃进至新的水平。
查全性
(中国科学院院士)
二〇一〇年夏于珞珈山
作者简介:
卢小泉,教授,博导,长期从事电化学及电分析化学的教学及科研工作.参加和主持多项国家、省部级科研项目,先后在国内外学术刊物上发表论文近100余篇,鉴定成果4项。荣获2012年度“长江学者奖励计划”特聘教授,入选甘肃省“555创新人才工程”,获得教育部第四届高校青年教师奖、中国化学会全国青年化学奖、甘肃省杰青、甘肃省青年科技创新杰出奖、甘肃省第六届青年成才奖、兰州市首届青年科技奖等,多次获甘肃省科学技术(自然科学)二等奖和甘肃省高校科技进步一等奖。
目录:
第1章绪论 1.1生物电现象1 1.2生物电化学及其研究范畴4 1.3生物电化学的应用现状及展望9 参考文献10 第2章电化学理论基础 2.1电极反应与电极电势12 2.1.1电极12 2.1.2电极反应13 2.1.3电极电势14 2.1.4液接界电势16 2.2双电层17 2.2.1电极/溶液界面的性质及其研究方法17 2.2.2双电层的结构20第1章绪论
1.1生物电现象1
1.2生物电化学及其研究范畴4
1.3生物电化学的应用现状及展望9
参考文献10
第2章电化学理论基础
2.1电极反应与电极电势12
2.1.1电极12
2.1.2电极反应13
2.1.3电极电势14
2.1.4液接界电势16
2.2双电层17
2.2.1电极/溶液界面的性质及其研究方法17
2.2.2双电层的结构20
2.3电化学过程热力学22
2.3.1Gibbs自由能变与电动势22
2.3.2可逆电化学过程热力学23
2.3.3不可逆及准可逆电化学过程热力学25
2.4电极反应动力学25
2.4.1动力学基本理论25
2.4.2电极过程的ButlerVolmer模型27
2.4.3标准速率常数和传递系数29
2.4.4交换电流密度30
2.4.5多电子步骤机理31
2.5电极体系中的传质过程32
2.5.1物质传递的形成32
2.5.2物质传递普遍方程的推导34
2.5.3扩散36
2.6电极过程动力学44
2.6.1过电势公式44
2.6.2复杂电极过程47
参考文献50
第3章电化学技术基础
3.1电化学测量体系组成52
3.1.1三电极体系52
3.1.2电解质溶液53
3.1.3隔膜54
3.1.4盐桥54
3.1.5鲁金毛细管55
3.1.6电解池58
3.2稳态测量技术61
3.2.1稳态过程61
3.2.2恒电流稳态与恒电势稳态测量62
3.2.3稳态极化曲线的测定65
3.3暂态测量技术67
3.3.1暂态过程67
3.3.2控制电流暂态测量技术68
3.3.3常见的阶跃电流波形69
3.3.4控制电流技术的应用70
3.3.5控制电势暂态测量技术72
3.4线性电势扫描伏安技术75
3.4.1线性电势扫描过程中相应电流的特点75
3.4.2电化学极化下的动电势扫描法76
3.4.3循环伏安法77
3.4.4薄层伏安法80
3.4.5大幅度线性电势扫描法的特点与应用80
3.5脉冲伏安技术81
3.5.1常规脉冲伏安法82
3.5.2微分脉冲极谱法83
3.5.3脉冲极谱的充电电流和毛细管噪声电流84
3.5.4差示脉冲伏安法85
3.5.5旋转电极脉冲伏安法85
3.5.6方波伏安法86
3.5.7脉冲伏安法的应用87
3.6电化学阻抗谱技术88
3.6.1电化学阻抗谱的基础知识90
3.6.2复合元件的阻纳93
3.6.3电极过程的等效电路99
3.6.4电化学阻抗谱的测量技术101
3.7电化学噪声技术103
3.7.1电化学噪声分类104
3.7.2电化学噪声测定105
3.7.3电化学噪声分析107
参考文献110
第4章环境与生物电化学
4.1生物电化学系统115
4.1.1BES的基本工作原理116
4.1.2BES的产电过程119
4.1.3生物质能源的产生120
4.2微生物燃料电池125
4.2.1微生物燃料电池的发展历史126
4.2.2微生物燃料电池的分类127
4.2.3微生物燃料电池的优点133
4.2.4微生物燃料电池存在的问题134
4.2.5微生物燃料电池的应用前景136
4.3微生物电解电池138
4.3.1微生物电解电池与微生物燃料电池的差异138
4.3.2微生物电解电池的优点139
4.3.3微生物电解电池的局限性139
4.3.4微生物电解电池的研究现状140
4.4生物电化学与环境监测141
4.4.1生物电化学传感器与环境监测141
4.4.2生物芯片与环境监测146
4.4.3生物电化学反应器与环境监测147
4.4.4生物电化学的发展方向147
参考文献147
第5章电化学联用技术
5.1光谱电化学技术154
5.1.1现场光谱电化学技术155
5.1.2非现场光谱技术165
5.1.3现场显微技术168
5.2电致化学发光技术168
5.2.1电致化学发光的特点169
5.2.2电致化学发光的仪器结构169
5.2.3电致化学发光的基本反应机理171
5.2.4电致化学发光的基本类型172
5.2.5电致化学发光的应用175
5.3扫描电化学显微镜179
5.3.1SECM简介179
5.3.2SECM的实验装置179
5.3.3SECM的工作模式181
5.3.4SECM的定量分析理论186
5.3.5SECM的应用186
5.3.6SECM的展望189
5.4电化学石英晶体微天平189
5.4.1石英晶体微天平的基本原理190
5.4.2电化学石英晶体微天平的应用191
5.5其他一些联用技术193
5.5.1SECM和其他技术联用193
5.5.2压电、红外光谱、电化学三维联用技术194
5.5.3电化学表面等离子体波共振技术195
5.5.4磁共振方法196
参考文献198
第6章电化学酶传感器
6.1酶的化学本质及其组成202
6.1.1酶的化学本质203
6.1.2酶的组成203
6.1.3酶的特点204
6.2酶促反应的电化学研究205
6.2.1酶促反应的特点205
6.2.2酶促反应的影响因素206
6.3酶电化学生物传感器207
6.3.1酶电化学生物传感器的工作原理207
6.3.2酶电化学生物传感器的分类208
6.3.3酶在电极上的固定化方法210
6.3.4酶传感器的应用现状212
6.3.5酶传感器的未来发展趋势215
6.4酶基生物燃料电池215
6.4.1酶基生物燃料电池的电极215
6.4.2酶电极的分类216
6.4.3酶的活性中心218
6.4.4外场对酶的影响219
6.4.5催化机理227
6.4.6酶电极的局限性227
参考文献228
第7章电化学微生物传感器和DNA传感器
7.1微生物固定化技术235
7.1.1吸附法236
7.1.2包埋法237
7.1.3交联法241
7.1.4微生物固定中的纳米材料242
7.2呼吸型电化学微生物传感器246
7.3代谢型电化学微生物传感器248
7.4中介型电化学微生物传感器249
7.5电化学微生物传感器的换频方式249
7.5.1电流型微生物传感器250
7.5.2电位型微生物传感器251
7.5.3电导型微生物传感器252
7.5.4微生物燃料电池型传感器253
7.6电化学微生物传感器的应用255
7.6.1在食品和发酵中的应用255
7.6.2环境监测256
参考文献256
第8章电化学核酸传感器
8.1核酸探针264
8.1.1核酸简介264
8.1.2核酸杂交探针266
8.1.3核酸适配子268
8.1.4Gquadruplex核酸探针272
8.2核酸探针在电极表面的固定方法273
8.2.1吸附固定273
8.2.2自组装274
8.2.3共价键合法275
8.2.4生物素亲和素结合法275
8.3电化学核酸传感器的信号检出276
8.3.1基于电化学活性指示剂的杂交检测276
8.3.2基于酶联反应的信号放大检测277
8.3.3基于纳米材料的信号检测278
8.3.4基于核酸体外扩增技术的信号放大检测281
8.4电化学核酸传感器的应用和发展趋势283
参考文献285
第9章电化学免疫型传感器
9.1电化学免疫分析291
9.2电化学免疫传感器293
9.2.1电化学免疫传感器的原理293
9.2.2电化学免疫传感器的分类294
9.2.3电化学免疫传感器中抗原抗体固定方法296
9.2.4电化学免疫传感器的表征302
9.2.5电化学免疫传感器的再生及更新302
9.2.6电化学免疫传感器的信号增强303
9.2.7电化学免疫传感器的应用317
9.3电化学酶联免疫分析320
9.3.1酶联免疫分析方法的基本原理321
9.3.2酶联免疫分析方法的常见类型321
9.4电化学酶联免疫传感器325
9.4.1电化学酶联免疫传感器的基本原理325
9.4.2电化学酶联免疫传感器的种类325
9.4.3电化学酶联免疫传感器的应用327
9.4.4电化学酶联免疫传感器的前景328
参考文献328
第10章氧化还原自组装膜界面电子转移研究
10.1氧化还原自组装膜电子传递研究的电化学分析方法338
10.1.1自组装膜338
10.1.2自组装膜电子传递研究的电化学分析方法340
10.1.3自组装膜长程电子转移的影响因素342
10.2自组装膜上的KET电化学测量的氧化还原体系343
10.2.1自组装膜长程电子转移理论简介344
10.2.2标准速率常数ks的理论计算公式345
10.2.3氧化还原体系K3Fe(CN)6-K4Fe(CN)6和亚甲基蓝-无色亚甲基蓝的电子转移速率常数的测定347
10.3ET动力学的微观效应351
10.3.1电子转移机理的基本概念351
10.3.2ET动力学352
10.3.3ET的微观理论353
10.4氧化还原自组装单层膜的结构354
10.5卟啉自组装膜电化学355
10.5.1卟啉自组装膜的制备355
10.5.2基于金属卟啉轴向配位的自组装研究358
10.6SECM表征卟啉自组装膜在金电极上的成膜过程361
10.6.1H2MPTPP修饰电极的循环伏安表征361
10.6.2表征卟啉自组装膜在金电极上的成膜过程363
10.6.3卟啉自组装单分子膜长程电子转移过程的SECM的研究366
10.6.4巯基卟啉在金电极表面自组装过程中的分子定位366
参考文献368
索引371
显示全部信息
- 化学工业出版社官方旗舰店 (微信公众号认证)
- 扫描二维码,访问我们的微信店铺
- 随时随地的购物、客服咨询、查询订单和物流...