商品详情
本书依据作者多年从事模式识别教学和研究的体会,并参考相关文献编写而成,概括地介绍了模式识 别理论和技术的基本概念、原理、方法和实现。 全书共分为11章,每章阐述模式识别中的一个知识点,内容包括贝叶斯决策、概率密度函数的估计、 线性判别分析、非线性判别分析、组合分类器、无监督模式识别、特征选择、特征提取、半监督学习以及人工 神经网络。除了经典算法以外,本书增加了部分较新的理论和算法,读者可以选择性地学习。本书还配以 电子课件、MATLAB仿真程序和实验指导书,便于教和学。 本书可以作为高等学校人工智能、计算机、信息、自动化、遥感、控制等专业本科生或研究生的教材或 参考书,也可以作为从事相关研究与应用人员的参考书。
- 清华大学出版社旗舰店 (微信公众号认证)
- 扫描二维码,访问我们的微信店铺
- 随时随地的购物、客服咨询、查询订单和物流...