人民邮电出版社有限公司店铺主页二维码
人民邮电出版社有限公司 微信认证
人民邮电出版社微店,为您提供最全面,最专业的一站式购书服务
微信扫描二维码,访问我们的微信店铺
你可以使用微信联系我们,随时随地的购物、客服咨询、查询订单和物流...

AI芯片:前沿技术与创新未来

119.90
运费: ¥ 0.00-20.00
AI芯片:前沿技术与创新未来  商品图0
AI芯片:前沿技术与创新未来  商品缩略图0

商品详情

书名:AI芯片:前沿技术与创新未来  
定价:159.8  
ISBN:9787115553195  
作者:张臣雄  
版次:第1版  
出版时间:2021-04  

内容提要:  
本书从AI的发展历史讲起,介绍了目前*热门的深度学习加速芯片和基于神经形态计算的类脑芯片的相关算法、架构、电路等,并介绍了近年来产业界和学术界一些**名的 AI芯片,包括生成对抗网络芯片和深度强化学习芯片等。本书着重介绍了用创新的思维来设计 AI 芯片的各种计算范式,以及下 一代AI芯片的几种范例,包括量子启发的 AI芯片、进一步提升智能程度的AI芯片、有机自进化AI芯片、光子AI芯片及自供电AI芯片等。本书也介绍了半导体芯片技术在“后摩尔定律时代”的发展 趋势,以及基础理论(如量子场论、信息论等)引* AI 芯片创新并将不断发挥巨大作用。*后,本书介绍了AI发展的三个层次、AI 芯片与生物大脑的差距以及未来的发展方向。 本书可供在AI芯片领域学习和工作的研究生、本科生、工程技术人员,以及所有对AI芯片感兴趣的人员参考。  



作者简介:  
张臣雄毕业于上海交通大学电子工程系,在德国获得工学硕士和工学博士学位。曾在西门子、Interphase任职多年,曾任上海通信技术中心及一家世界500强大型高科技企业分别担任CEO/CTO、&席科学家等职,长期从事及主管半导体芯片的研究和开发,推动芯片的产业化应用。 张臣雄博士是两家创业公司的创始人之一。他拥有200余项专利及专利申请,出版了多本专著并发表了100多篇论文。  

目录:  
*一篇 导论  
*1章 AI芯片是人工智能未来发展的核心  
——什么是AI芯片 // 2  
1.1 AI芯片的历史 // 3  
1.2 AI芯片要完成的基本运算 // 5  
1.2.1 大脑的工作机制 // 5  
1.2.2 模拟大脑运作的神经网络的计算 // 7  
1.2.3 深度学习如何进行预测 // 8  
1.2.4 提高性能和降低功耗 // 9  
1.3 AI芯片的种类 // 11  
1.3.1 深度学习加速器 // 15  
1.3.2 类脑芯片 // 16  
1.3.3 仿生芯片及其他智能芯片 // 17  
1.3.4 基于忆阻器的芯片 // 19  
1.4 AI芯片的研发概况 // 22  
1.5 小结 // 23  

*2章 执行“训练”和“推理”的AI芯片 // 25  
2.1 深度学习算法成为目前的主流 // 25  
2.1.1 深度学习的优势与不足 // 28  
2.1.2 监督学习与无监督学习 // 29  
2.1.3 AI芯片用于云端与边缘侧 // 31  
2.1.4 把AI 计算从云端迁移到边缘侧 // 36  
2.1.4.1 为什么要在边缘侧部署AI // 37  
2.1.4.2 提高边缘侧AI 计算能力的几个思路 // 38  
2.2 AI 芯片的创新计算范式 // 40  
2.3 AI 芯片的创新实现方法 // 42  
2.4 小结 // 45  

*二篇 *热门的AI 芯片  
第3章 深度学习AI 芯片 // 48  
3.1 深度神经网络的基本组成及硬件实现 // 48  
3.1.1 AI 芯片的设计流程 // 50  
3.1.2 计算引擎和存储系统 // 51  
3.1.2.1 计算引擎 // 51  
3.1.2.2 存储系统 // 55  
3.2 算法的设计和优化 // 57  
3.2.1 降低数值精度的量化技术 // 57  
3.2.2 压缩网络规模、“修剪”网络 // 62  
3.2.3 二值或三值神经网络 // 63  
3.2.4 可变精度和迁移精度 // 64  
3.2.5 简化卷积层 // 66  
3.2.6 增加和利用网络稀疏性 // 66  
3.3 架构的设计和优化 // 67  
3.3.1 把数据流用图表示的架构设计 // 68  
3.3.2 架构设计及优化的其他考虑 // 71  
3.4 电路的设计和优化 // 72  
3.4.1 用模数混合电路设计的MAC // 73  
3.4.2 FPGA 及其Overlay 技术(“软件定义硬件”) // 74  
3.5 其他设计方法 // 76  
3.5.1 卷积分解方法 // 76  
3.5.2 提前终止方法 // 77  
3.5.3 知识蒸馏方法 // 77  
3.5.4 经验测量方法 // 78  
3.5.5 哈希算法取代矩阵乘法 // 78  
3.5.6 神经架构搜索 // 78  
3.6 AI 芯片性能的衡量和评价 // 79  
3.7 小结 // 82  

第4章 AI 芯片产业和创业  
——近年研发的AI 芯片及其特点 // 85  
4.1 对AI 芯片巨大市场的期待 // 86  
4.2 “1+3”大公司格局 // 87  
4.2.1 英伟达 // 87  
4.2.2 谷歌 // 91  
4.2.3 英特尔 // 94  
4.2.4 微软 // 96  
4.2.5 其他一些**名公司的AI 芯片 // 97  
4.2.6 三位*界级AI 科学家 // 101  
4.3 学术界和初创公司 // 102  
4.3.1 大学和研究机构的AI 芯片 // 103  
4.3.2 四家初创“独角兽”公司的芯片 // 111  
4.4 小结 // 119  

第5章 神经形态计算和类脑芯片 // 121  
5.1 脉冲神经网络的基本原理 // 122  
5.2 类脑芯片的实现 // 125  
5.2.1 忆阻器实现 // 127  
5.2.2 用自旋电子器件实现 // 129  
5.3 基于DNN 和SNN 的AI 芯片比较及未来可能的融合 // 131  
5.4 类脑芯片的例子及*新发展 // 133  
5.5 小结 // 138  

第三篇 用于AI 芯片的创新计算范式  
第6章 模拟计算 // 142  
6.1 模拟计算芯片 // 143  
6.2 新型非易失性存储器推动了模拟计算 // 147  
6.2.1 用阻变存储器实现模拟计算 // 147  
6.2.2 用相变存储器实现模拟计算 // 149  
6.2.3 权重更新的挑战 // 150  
6.2.4 NVM 器件的材料研究和创新 // 151  
6.3 模拟计算的应用范围及其他实现方法 // 153  
6.4 模拟计算的未来趋势 // 154  
6.5 小结 // 156  

第7章 存内计算 // 158  
7.1 冯·诺依曼架构与存内计算架构 // 158  
7.2 基于存内计算的AI 芯片 // 161  
7.2.1 改进现有存储芯片来完成存内计算 // 161  
7.2.2 用3D 堆叠存储技术来完成存内计算 // 164  
7.2.3 用新型非易失性存储器来完成存内计算 // 165  
7.3 小结 // 171  

第8章 近似计算、随机计算和可逆计算 // 174  
8.1 近似计算 // 174  
8.1.1 减少循环迭代次数的近似计算 // 176  
8.1.2 近似加法器和近似乘法器 // 177  
8.1.3 降低电源电压的近似计算 // 178  
8.1.4 基于RRAM 的近似计算 // 180  
8.1.5 应对电路故障的近似计算 // 182  
8.2 随机计算 // 182  
8.3 可逆计算 // 187  
8.4 小结 // 191  

第9章 自然计算和仿生计算 // 192  
9.1 组合优化问题 // 193  
9.2 组合优化问题的*优化算法 // 195  
9.2.1 模拟退火 // 195  
9.2.2 自组织映射 // 197  
9.2.3 群体算法 // 199  
9.3 超参数及神经架构搜索 // 201  
9.3.1 粒子群优化的应用 // 202  
9.3.2 强化学习方法的应用 // 202  
9.3.3 进化算法的应用 // 203  
9.3.4 其他自然仿生算法的应用 // 204  
9.4 基于自然仿生算法的AI 芯片 // 205  
9.4.1 粒子群优化的芯片实现 // 206  
9.4.2 用忆阻器实现模拟退火算法 // 207  
9.5 小结 // 208  

第四篇 下一代AI 芯片  
*10 章 受量子原理启发的AI 芯片 // 210  
10.1 量子退火机 // 210  
10.2 伊辛模型的基本原理 // 212  
10.3 用于解决组合优化问题的AI 芯片 // 214  
10.3.1 基于FPGA 的可编程数字退火芯片 // 214  
10.3.2 使用OPO 激光网络来进行*优化计算 // 216  
10.3.3 CMOS 退火芯片 // 218  
10.3.4 商用量子启发AI 芯片 // 220  
10.4 量子启发AI 芯片的应用 // 221  
10.5 小结 // 223  

*11 章 进一步提高智能程度的AI 算法及芯片 // 224  
11.1 自学习和创意计算 // 225  
11.2 元学习 // 226  
11.2.1 模型不可知元学习 // 226  
11.2.2 元学习共享分层 // 227  
11.2.3 终身学习 // 228  
11.2.4 用类脑芯片实现元学习 // 229  
11.3 元推理 // 230  
11.4 解开神经网络内部表征的缠结 // 231  
11.5 生成对抗网络 // 235  
11.5.1 生成对抗网络的FPGA 实现 // 239  
11.5.2 生成对抗网络的CMOS 实现 // 239  
11.5.3 生成对抗网络的RRAM 实现 // 240  
11.6 小结 // 242  

*12 章 有机计算和自进化AI 芯片 // 243  
12.1 带自主性的AI 芯片 // 244  
12.2 自主计算和有机计算 // 247  
12.3 自进化硬件架构与自进化AI 芯片 // 248  
12.3.1 自进化硬件架构 // 248  
12.3.2 自进化AI 芯片 // 250  
12.4 深度强化学习AI 芯片 // 252  
12.5 进化算法和深度学习算法的结合 // 253  
12.6 有机计算和迁移学习的结合 // 254  
12.7 小结 // 255  

*13 章 光子AI 芯片和储备池计算 // 256  
13.1 光子AI 芯片 // 257  
13.1.1 硅光芯片 // 258  
13.1.2 光学神经网络架构 // 259  
13.1.3 光子AI 芯片 // 261  
13.2 基于储备池计算的AI 芯片 // 263  
13.3 光子芯片的新进展 // 267  
13.4 小结 // 268  

第五篇 推动AI 芯片发展的新技术  
*14 章 超低功耗与自供电AI 芯片 // 271  
14.1 超低功耗AI 芯片 // 271  
14.2 自供电AI 芯片 // 274  
14.2.1 使用太阳能的AI 芯片 // 276  
14.2.2 无线射频信号能量采集 // 277  
14.2.3 摩擦生电器件 // 280  
14.2.4 微尘大小的AI 芯片 // 282  
14.2.5 可采集能源的特点 // 283  
14.2.6 其他可能被发掘的能源 // 284  
14.3 小结 // 285  

*15 章 后摩尔定律时代的芯片 // 287  
15.1 摩尔定律仍然继续,还是即将终结 // 287  
15.1.1 摩尔定律进一步 // 290  
15.1.2 比摩尔定律更多 // 293  
15.1.3 超越CMOS // 300  
15.2 芯片设计自动化的前景 // 310  
15.3 后摩尔定律时代的重要变革是量子计算芯片 // 312  
15.4 小结 // 313  

第六篇 促进AI 芯片发展的基础理论研究、应用和创新  
*16 章 基础理论研究引*AI 芯片创新 // 316  
16.1 量子场论 // 317  
16.1.1 规范场论与球形曲面卷积 // 317  
16.1.2 重整化群与深度学习 // 321  
16.2 超材料与电磁波深度神经网络 // 322  
16.3 老子之道 // 327  
16.4 量子机器学习与量子神经网络 // 331  
16.5 统计物理与信息论 // 333  
16.6 小结 // 336  

*17 章 AI 芯片的应用和发展前景 // 338  
17.1 AI 的未来发展 // 338  
17.2 AI 芯片的功能和技术热点 // 341  
17.3 AI 的三个层次和AI 芯片的应用 // 343  
17.4 更接近生物大脑的AI 芯片 // 346  
17.4.1 带“左脑”和“右脑”的AI 芯片 // 349  
17.4.2 用细菌实现的扩散忆阻器 // 350  
17.4.3 用自旋电子器件实现的微波神经网络 // 351  
17.4.4 用电化学原理实现模拟计算 // 352  
17.5 AI 芯片设计是一门跨界技术 // 353  
17.6 小结 // 355  
附录 中英文对照表 // 360  
参考文献 // 371  

人民邮电出版社有限公司店铺主页二维码
人民邮电出版社有限公司 微信公众号认证
人民邮电出版社微店,为您提供最全面,最专业的一站式购书服务
扫描二维码,访问我们的微信店铺
随时随地的购物、客服咨询、查询订单和物流...

AI芯片:前沿技术与创新未来

手机启动微信
扫一扫购买

收藏到微信 or 发给朋友

1. 打开微信,扫一扫左侧二维码

2. 点击右上角图标

点击右上角分享图标

3. 发送给朋友、分享到朋友圈、收藏

发送给朋友、分享到朋友圈、收藏

微信支付

支付宝

扫一扫购买

打开微信,扫一扫

或搜索微信号:renyoushe
人民邮电出版社官方微信公众号

收藏到微信 or 发给朋友

1. 打开微信,扫一扫左侧二维码

2. 点击右上角图标

点击右上角分享图标

3. 发送给朋友、分享到朋友圈、收藏

发送给朋友、分享到朋友圈、收藏