人民邮电出版社有限公司店铺主页二维码
人民邮电出版社有限公司 微信认证
人民邮电出版社微店,为您提供最全面,最专业的一站式购书服务
微信扫描二维码,访问我们的微信店铺
你可以使用微信联系我们,随时随地的购物、客服咨询、查询订单和物流...

PyTorch深度学习和图*经网络卷2开发应用

97.40
运费: ¥ 0.00-20.00
PyTorch深度学习和图*经网络卷2开发应用  商品图0
PyTorch深度学习和图*经网络卷2开发应用  商品图1
PyTorch深度学习和图*经网络卷2开发应用  商品缩略图0 PyTorch深度学习和图*经网络卷2开发应用  商品缩略图1

商品详情

书名:PyTorch深度学习和图*经网络.卷2,开发应用  
定*:129.8  
ISBN:9787**5560926  
作者:李金洪  
版次:第*版  
出版时间:202*-*2  

内容提要:  
本书通过深度学习实例,从可解释性角度出发,阐述深度学习的原理,并将图*经网络与深度学习结合,介绍图*经网络的实现技术。本书分为6章,主要内容*括:图片分类模型、机器视觉的*级应用、自然语言处理的相关应用、*经网络的可解释性、识别未知分类的方法——零次学习、异构图*经网络。本书中的实例是在PyTorch框架上完成的,具有较*的实用*值。 本书适合人工智能从业者、程序员进*学习,也适合作为大*院校相关*业师生的教学和学习用书,以及培训学校的教材。  



作者简介:  
李金洪, *通C、Python、Java语言,擅长*经网络、算法、协议分析、移动互联网*架构等技术,先后担任过CAD算法工程师、架构师、项目经理、*门经理等职位。参与过深度学习*域某移动互联网后台的OCR项目,某娱乐节目机器人的语音识别、声纹识别项目,金融*域的若干分类项目。  

目录:  
目录  
第 *章 图片分类模型 *  
*.* 深度*经网络起源 2  
*.2 Inception系列模型 2  
*.2.* 多分支结构 2  
*.2.2 *局均值池化 3  
*.2.3 Inception V*模型 3  
*.2.4 Inception V2模型 4  
*.2.5 Inception V3模型 5  
*.2.6 Inception V4模型 6  
*.2.7 Inception-ResNet V2模型 6  
*.3 ResNet模型 6  
*.3.* 残差连接的结构 7  
*.3.2 残差连接的原理 8  
*.4 DenseNet模型 8  
*.4.* DenseNet模型的网络结构 8  
*.4.2 DenseNet模型的*点 9  
*.4.3 稠密块 9  
*.5 PNASNet模型 9  
*.5.* 组卷积 *0  
*.5.2 深度可分离卷积 **  
*.5.3 空洞卷积 *2  
*.6 EfficientNet模型 *4  
*.6.* MBConv卷积块 *5  
*.6.2 DropConnect层 *6  
*.7 实例:使用预训练模型识别图片内容 *6  
*.7.* 了解torchvision库中的预训练模型 *6  
*.7.2 代码实现:下载并加载预训练模型 *7  
*.7.3 代码实现:加载标签并对输入数据进行预处理 *8  
*.7.4 代码实现:使用模型进行预测 *9  
*.7.5 代码实现:预测结果可视化 20  
*.8 实例:使用迁移学习识别多种鸟类 2*  
*.8.* 什么是迁移学习 2*  
*.8.2 样本介绍:鸟类数据集CUB-200 22  
*.8.3 代码实现:用torch.utils.data接口封装数据集 22  
*.8.4 代码实现:获取并改造ResNet模型 27  
*.8.5 代码实现:微调模型最后*层 28  
*.8.6 代码实现:使用退化学习率对 模型进行*局微调 29  
*.8.7 扩展实例:使用随机数据增强方法训练模型 30  
*.8.8 扩展:分类模型中常用的3种损失函数 3*  
*.8.9 扩展实例:样本均衡 3*  
*.9 从深度卷积模型中提取视觉*征 33  
*.9.* 使用钩子函数的方式提取视觉*征 33  
*.9.2 使用重组结构的方式提取视觉*征 34  
第 2章 机器视觉的*级应用 37  
2.* 基于图片内容的处理任务 38  
2.*.* 目标检测任务 38  
2.*.2 图片分割任务 38  
2.*.3 非*大值抑制算法 39  
2.*.4 Mask R-CNN模型 39  
2.2 实例:使用Mask R-CNN模型进行目标检测与语义分割 4*  
2.2.* 代码实现:了解PyTorch中目标检测的内置模型 4*  
2.2.2 代码实现:使用PyTorch中目标检测的内置模型 42  
2.2.3 扩展实例:使用内置的预训练模型进行语义分割 43  
2.3 基于视频内容的处理任务 47  
2.4 实例:用GaitSet模型分析人走路的姿态,并进行身份识别 47  
2.4.* 步态识别的做法和思路 47  
2.4.2 GaitSet模型 48  
2.4.3 多层*流程管线 50  
2.4.4 水平金字塔池化 5*  
2.4.5 三元损失 52  
2.4.6 样本介绍:CASIA-B数据集 53  
2.4.7 代码实现:用torch.utils.data接口封装数据集 54  
2.4.8 代码实现:用torch.utils.data.sampler类*建含多标签批次数据的采样器 60  
2.4.9 代码实现:搭建 GaitSet模型 64  
2.4.*0 代码实现:自定义三元损失类 67  
2.4.** 代码实现:训练模型并*存模型权重文件 69  
2.4.*2 代码实现:测试模型 72  
2.4.*3 扩展实例:用深度卷积和最大池化 *化模型 77  
2.4.*4 扩展实例:视频采样并提取 轮廓 78  
2.4.*5 步态识别模型的局限性 79  
2.5 调试技巧 79  
2.5.* 解决显存过满损失值为0问题 80  
2.5.2 跟踪PyTorch显存并查找显存泄露点 8*  
第3章 自然语言处理的相关应用 83  
3.* BERT模型与NLP任务的发展*段 84  
3.*.* 基础的*经网络*段 84  
3.*.2 BERTology*段 84  
3.2 NLP中的常见任务 84  
3.2.* 基于文章处理的任务 85  
3.2.2 基于句子处理的任务 85  
3.2.3 基于句子中词的处理任务 86  
3.3 实例:训练中文词向量 87  
3.3.* CBOW和Skip-Gram模型 87  
3.3.2 代码实现:样本预处理并生成字典 88  
3.3.3 代码实现:按照Skip-Gram模型的规则制作数据集 90  
3.3.4 代码实现:搭建模型并进行 训练 92  
3.3.5 夹角余弦 95  
3.3.6 代码实现:词嵌入可视化 96  
3.3.7 词向量的应用 97  
3.4 常用文本处理工具 98  
3.4.* spaCy库的介绍和安装 98  
3.4.2 与PyTorch深度结合的文本 处理库torchtext 99  
3.4.3 torchtext库及其内置数据集与 调用库的安装 99  
3.4.4 torchtext库中的内置预训练词 向量 *00  
3.5 实例:用TextCNN模型分析评论者是否满意 *00  
3.5.* 了解用于文本分类的卷积*经网络模型——TextCNN *0*  
3.5.2 样本介绍:了解电影评论 数据集IMDB *02  
3.5.3 代码实现:引入基础库 *02  
3.5.4 代码实现:用torchtext加载 IMDB并拆分为数据集 *03  
3.5.5 代码实现:加载预训练词向量并进行样本数据转化 *05  
3.5.6 代码实现:定义带有Mish激活 函数的TextCNN模型 *07  
3.5.7 代码实现:用数据集参数实例化 模型 *09  
3.5.8 代码实现:用预训练词向量 初始化模型 *09  
3.5.9 代码实现:用Ranger*化器训练模型 *09  
3.5.*0 代码实现:使用模型进行预测 **2  
3.6 了解Transformers库 **3  
3.6.* Transformers库的定义 **3  
3.6.2 Transformers库的安装方法 **4  
3.6.3 查看Transformers库的版本信息 **5  
3.6.4 Transformers库的3层应用 结构 **5  
3.7 实例: 使用Transformers库的管道方式完成多种NLP任务 **6  
3.7.* 在管道方式中*NLP任务 **6  
3.7.2 代码实现:完成文本分类任务 **7  
3.7.3 代码实现:完成*征提取任务 **9  
3.7.4 代码实现:完成完形填空任务 *20  
3.7.5 代码实现:完成阅读理解任务 *2*  
3.7.6 代码实现:完成摘要生成任务 *23  
3.7.7 预训练模型文件的组成及其加载时的固定文件名称 *24  
3.7.8 代码实现:完成实体词识别任务 *24  
3.7.9 管道方式的工作原理 *25  
3.7.*0 在管道方式中加载* 模型 *27  
3.8 Transformers库中的AutoModel类 *28  
3.8.* 各种AutoModel类 *28  
3.8.2 AutoModel类的模型加载机制 *29  
3.8.3 Transformers库中更多的预训练 模型 *30  
3.9 Transformers库中的BERTology系列模型 *3*  
3.9.* Transformers库的文件结构 *3*  
3.9.2 查找Transformers库中可以使用的模型 *35  
3.9.3 实例:用BERT模型实现完形填空任务 *36  
3.9.4 扩展实例:用 AutoModelWithMHead类 替换BertForMaskedLM类 *38  
3.*0 Transformers库中的词表工具 *39  
3.*0.* PreTrainedTokenizer类中的 *殊词 *39  
3.*0.2 PreTrainedTokenizer类的 *殊词使用 *40  
3.*0.3 向PreTrainedTokenizer类中 添加词 *44  
3.*0.4 实例:用手动加载GPT-2模型 权重的方式将句子补充完整 *45  
3.*0.5 子词的拆分 *48  
3.** BERTology系列模型 *49  
3.**.* Transformer之前的主流模型 *49  
3.**.2 Transformer模型 *5*  
3.**.3 BERT模型 *53  
3.**.4 GPT-2模型 *57  
3.**.5 Transformer-XL模型 *57  
3.**.6 XLNet模型 *58  
3.**.7 XLNet模型与AE模型和AR 模型间的关系 *6*  
3.**.8 RoBERTa模型 *6*  
3.**.9 SpanBERT模型 *62  
3.**.*0 ELECTRA模型 *62  
3.**.** T5模型 *63  
3.**.*2 ALBERT模型 *64  
3.**.*3 DistillBERT模型与知识蒸馏 *66  
3.*2 实例: 用迁移学习训练BERT模型来对中文分类 *67  
3.*2.* 样本介绍 *67  
3.*2.2 代码实现:构建数据集 *68  
3.*2.3 代码实现:构建并加载BERT预训练模型 *69  
3.*2.4 BERT模型类的内*逻辑 *70  
3.*2.5 代码实现:用退化学习率训练模型 *72  
3.*2.6 扩展:更多的中文预训练模型 *75  
3.*3 实例:用R-GCN模型理解文本中的代词 *75  
3.*3.* 代词数据集 *75  
3.*3.2 R-GCN模型的原理与实现 *76  
3.*3.3 将GAP数据集转化成图结构数据的思路 *79  
3.*3.4 代码实现:用BERT模型提取代词*征 *8*  
3.*3.5 代码实现:用BERT模型提取 其他词*征 *83  
3.*3.6 用spaCy工具对句子依存 分析 *85  
3.*3.7 代码实现:使用spaCy和批次 图方法构建图数据集 *87  
3.*3.8 代码实现:搭建多层R-GCN 模型 *92  
3.*3.9 代码实现:搭建*经网络 分类层 *93  
3.*3.*0 使用5折交叉验证方法训练 模型 *96  
第4章 *经网络的可解释性 *97  
4.* 了解模型解释库 *98  
4.*.* 了解Captum工具 *98  
4.*.2 可视化可解释性工具Captum Insights *98  
4.2 实例:用可解释性理解数值分析*经网络模型 *99  
4.2.* 代码实现:载入模型 *99  
4.2.2 代码实现:用梯度积分算法分析模型的敏感属性 200  
4.2.3 代码实现:用Layer Conductance方法查看单个网络层中的*经元 202  
4.2.4 代码实现:用Neuron Conductance方法查看每个*经元所关注的属性 204  
4.3 实例:用可解释性理解NLP相关的*经网络模型 205  
4.3.* 词嵌入模型的可解释性方法 205  
4.3.2 代码实现:载入模型类并将其处理 过程拆开 206  
4.3.3 代码实现:实例化并加载模型权重,提取模型的词嵌入层 207  
4.3.4 代码实现:用梯度积分算法计算模型的可解释性 208  
4.3.5 代码实现:输出模型可解释性的可视化图像 2*0  
4.4 实例:用Bertviz工具可视化BERT模型权重 2**  
4.4.* 什么是Bertviz工具 2*2  
4.4.2 代码实现:载入BERT模型并可视化其权重 2*2  
4.4.3 解读BERT模型的权重可视化结果 2*6  
4.5 实例:用可解释性理解图像处理相关的*经网络模型 2*9  
4.5.* 代码实现:载入模型并进行图像分类 2*9  
4.5.2 代码实现:用4种可解释性算法对模型进行可解释性计算 220  
4.5.3 代码实现:可视化模型的4种可解释性算法结果 22*  
4.6 实例:用可解释性理解图片分类相关的*经网络模型 222  
4.6.* 了解Grad-CAM方法 223  
4.6.2 代码实现:加载ResNet*8模型并注册钩子函数提取*征数据 225  
4.6.3 代码实现:调用模型提取中间层*征数据和输出层权重 226  
4.6.4 代码实现:可视化模型的识别区域 227  
第5章 识别未知分类的方法——零次 学习 229  
5.* 了解零次学习 230  
5.*.* 零次学习的思想与原理 230  
5.*.2 与零次学习有关的常用数据集 232  
5.*.3 零次学习的基本做法 233  
5.*.4 直推式学习 233  
5.*.5 泛化的零次学习任务 233  
5.2 零次学习中的常见问题 233  
5.2.* *域漂移问题 234  
5.2.2 原型*疏性问题 235  
5.2.3 语义间隔问题 235  
5.3 带有视觉结构约束的VSC模型 236  
5.3.* 分类模型中视觉*征的本质 236  
5.3.2 VSC模型的原理 237  
5.3.3 基于视觉中心点学习的约束方法 238  
5.3.4 基于倒角距离的视觉结构约束方法 239  
5.3.5 什么是对称的倒角距离 239  
5.3.6 基于二分匹配的视觉结构约束方法 239  
5.3.7 什么是指派问题与耦合矩阵 240  
5.3.8 基于W距离的视觉结构约束方法 240  
5.3.9 什么是最*传输 24*  
5.3.*0 什么是最*传输中的熵 正则化 242  
5.4 详解Sinkhorn 算法 244  
5.4.* Sinkhorn算法的求解转换 244  
5.4.2 Sinkhorn算法的原理 245  
5.4.3 Sinkhorn算法中参数ε的 原理 246  
5.4.4 举例Sinkhorn算法过程 246  
5.4.5 Sinkhorn算法中的质量守恒 248  
5.4.6 Sinkhorn算法的代码实现 250  
5.5 实例:使用VSC模型来识别未知类别的鸟类图片 252  
5.5.* 样本介绍:用于ZSL任务的鸟类数据集 252  
5.5.2 代码实现:用迁移学习的方式获得 训练数据集分类模型 253  
5.5.3 使用分类模型提取图片视觉 *征 254  
5.5.4 代码实现:用多层图卷积*经 网络实现VSC模型 255  
5.5.5 代码实现:基于W距离的损失 函数 256  
5.5.6 加载数据并进行训练 257  
5.5.7 代码实现:根据*征距离对图片 进行分类 258  
5.6 针对零次学习的性能分析 259  
5.6.* 分析视觉*征的质量 259  
5.6.2 分析直推式学习的效果 260  
5.6.3 分析直推模型的能力 26*  
5.6.4 分析未知类别的聚类效果 262  
5.6.5 清洗测试集 263  
5.6.6 利用可视化方法进行辅助分析 264  
第6章 异构图*经网络 267  
6.* 异构图的基础知识 268  
6.*.* 同构图与异构图 268  
6.*.2 什么是异构图*经网络 268  
6.*.3 二分图 268  
6.*.4 局*图卷积 270  
6.2 二分图的实现方式 270  
6.2.* 用NetworkX实现二分图 270  
6.2.2 使用DGL构建二分图 272  
6.2.3 二分图对象的调试技巧 275  
6.3 异构图的实现方式 276  
6.3.* *建异构图 276  
6.3.2 设置异构图的节点个数 277  
6.3.3 异构图结构的查看方式 278  
6.3.4 异构图与同构图的相互转化 280  
6.3.5 异构图与同构图的属性操作方式 28*  
6.4 随机行走采样 282  
6.4.* 什么是随机行走 283  
6.4.2 普通随机行走 283  
6.4.3 带停止概率的随机行走 284  
6.4.4 带路径概率的随机行走 284  
6.4.5 基于原图的随机行走 285  
6.4.6 在基于异构图的随机行走中设置停止概率 286  
6.4.7 基于随机行走采样的数据处理 287  
6.4.8 以随机行走的方式对邻居节点采样 287  
6.5 DGL库中的块图结构 289  
6.5.* 设计块图的动机 289  
6.5.2 将同构图转化成块图 290  
6.5.3 块图的属性操作 290  
6.5.4 将二分图转化成块图 29*  
6.6 实例:使用PinSAGE模型搭建推荐系统 292  
6.6.* 准备MoiveLens数据集 292  
6.6.2 代码实现:用Panadas库加载数据 293  
6.6.3 Categories与category 类型 294  
6.6.4 代码实现:生成异构图 295  
6.6.5 代码实现:用边分组方法拆分并*存数据集 296  
6.6.6 PinSAGE模型 299  
6.6.7 代码实现:构建带有邻居节点采样功能的数据加载器 300  
6.6.8 代码实现:PinSAGE模型的采样 过程 305  
6.6.9 代码实现:搭建PinSAGE模型 309  
6.6.*0 代码实现:实例化PinSAGE模型类并进行训练 3*5  
6.6.** 代码实现:用PinSAGE模型为 用户推荐电影 3*5  
6.6.*2 扩展:在PinSAGE模型中融合 更多的*征数据 3*7  
6.7 总结 3*7  

人民邮电出版社有限公司店铺主页二维码
人民邮电出版社有限公司 微信公众号认证
人民邮电出版社微店,为您提供最全面,最专业的一站式购书服务
扫描二维码,访问我们的微信店铺
随时随地的购物、客服咨询、查询订单和物流...

PyTorch深度学习和图*经网络卷2开发应用

手机启动微信
扫一扫购买

收藏到微信 or 发给朋友

1. 打开微信,扫一扫左侧二维码

2. 点击右上角图标

点击右上角分享图标

3. 发送给朋友、分享到朋友圈、收藏

发送给朋友、分享到朋友圈、收藏

微信支付

支付宝

扫一扫购买

打开微信,扫一扫

或搜索微信号:renyoushe
人民邮电出版社官方微信公众号

收藏到微信 or 发给朋友

1. 打开微信,扫一扫左侧二维码

2. 点击右上角图标

点击右上角分享图标

3. 发送给朋友、分享到朋友圈、收藏

发送给朋友、分享到朋友圈、收藏