推荐序
卷积神经网络乃机器学习领域中深度学习技术至著名内容之一。魏秀参博士在LAMDA 求学数年,对卷积神经网络及其视觉应用颇有所长,博士未毕业即被旷视科技聘为南京研究院负责人,毕业之际将心得材料转撰成书请愚致序。师生之谊,盛情难却。
在国内计算机领域,写书乃吃力不讨好之事。且不论写一本耐读、令读者每阅皆有所获之书何等不易,更不消说众口难调出一本令各型读者皆赞之书何等无望,仅认真写书所耗时间精力之巨、提职时不若期刊论文之效、收入不比同等精力兼差打工之得,已令人生畏,何况稍有不慎就有误人子弟之嫌,令一线学者若不狠心苛己,实难着手。
然有志求学本领域之士渐增,母语优良读物之不足实碍科学技术乃至产业发展。毕竟未必众人皆惯阅外文书籍,亦未必尽能体会外文微妙表达变化之蕴义,更不消说母语阅读对新入行者之轻快适意。愚曾自认四十不惑前学力不足立著,但国内科研水准日新月异,青年才俊茁然成长,以旺盛之精力分享所学,诚堪嘉勉。
市面上深度学习书籍已不少,但专门针对卷积神经网络展开,侧重实践又不失论释者尚不多见。本书基本覆盖了卷积神经网络实践所涉之环节,作者交代的若干心得技巧亦可一观,读者在实践中或有见益。望本书之出版能有助于读者更好地了解和掌握卷积神经网络,进一步促进深度学习技术之推广。
周志华
2018 年10 月于南京
卷积神经网络作为至先落地的深度学习技术之一,已经被应用于手机、安防、自动驾驶等多个领域。本书作者结合在知名研究机构和独角兽人工智能企业的研发经历,向读者展现了深度学习特别是卷积神经网络方面从数据、模型到系统的全栈式开发过程和技巧。
——刘国清,MINIEYE CEO
记得很早之前就看过魏博士的Tricks in Deep Neural Networks,受到了不少的启发,让我个人在实际应用中对深度学习的处理手段和思路变得更加的多样和灵活。魏博士也非常活跃,乐于在社区和论坛分享他的知识,这点非常值得大家学习。本书汇聚了魏博士对深度学习在视觉实践上的理解。
无论你是已经身处工业界的工程师还是在校的研究生,只要在做深度学习、卷积神经网络和视觉应用,本书都非常值得一读。
——罗韵,深圳极视角科技有限公司技术合伙人
过去6 年左右时间,深度学习不但改变了人工智能、统计机器学习的整个科学研究的面貌,并且成功地在工业界产生很多颠覆性的应用。本书作为深度学习的入门教材, 在内容上涵盖了深度学习基础的方方面面:从基本概念一直到训练模型的技巧。可贵的是,本书成功地把深度学习的相关数学概念解释得通俗易懂。本书可能是我知道的至好的深度学习的中文入门教材。
——沈春华,澳大利亚阿德莱德大学计算机科学学院终身教授
深度学习是当下至流行、效果至好的机器学习方法之一,它将当前的很多感知算法(如计算机视觉、语音识别等)的效果提升了一大截,从而也催生了一大批新的人工智能产业应用落地。本书以深度学习中应用至广泛的卷积神经网络为对象,以计算机视觉作为应用案例,是一本非常实用的起步教程。
——唐文斌,旷视科技联合创始人兼CTO
秀参的这本《解析深度学习:卷积神经网络原理与视觉实践》从卷积神经网络的基础知识入手,搭配上计算机视觉领域的实操技巧,内容翔实、语言精炼、理论结合实践,不仅适合深度学习领域刚入门的读者参考学习,同时也可供相关领域从业工作者作为使用手册常伴左右。
——吴甘沙,驭势科技CEO、联合创始人
如果要问用于图像理解任务什么模型至好,回答十有八九是深度神经网络。市面上神经网络、深度学习的书籍多关注神经网络的原理介绍,但是对于初学者而言,更多的时候可能是头痛于深度网络实践中面临的种种“坑”,即容易被忽略却时常起到关键作用的技巧。本书不仅有通俗易懂的相关原理介绍,还可以说是作者的“趟坑”经验总结,对于初学者是难得的上手宝典。
——俞扬,南京大学副教授、全球AI’s 10 to Watch