商品详情
书名:散乱数据拟合的模型、方法和理论(第二版)(英文版)
定价:98.0
ISBN:9787030748553
作者:吴宗敏
版次:1
出版时间:2023-03
内容提要:
本书是应用数学与计算数学中有关…面及多元函数插值、逼近、拟合的入门书籍,从多种物理背景、原理出发,导出相应的散乱数据拟合的数学模型及计算方法,进而逐个进行深入的理论分析。书中介绍了多元散乱数据拟合的一般方法,包括多元散乱数据多项式插值、基于三角剖分的插值方法、Boole和与Coons…面、Sibson方法或自然邻近法、Shepard方法、Kriging方法、薄板样条方法、MQ拟插值法、径向基函数方法、运动最小二乘法、隐函数样条方法、R函数法等;同时还特别介绍了近年来国际上越来越热并在无网格微分方程数值解方面有诸多应用的径向基函数方法及其相关理论。
目录:
Contents
Preface to the Second Edition Preface to the First Edition
Chapter 1 Scattered Data Approximation and Multivariate Polynomial Interpolation 1
1.1 Motivation Problems 1
1.1.1 Problems from Applications 2
1.1.2 Problems from Mathematics 3
1.2 Haar Condition for Interpolation 4
1.3 Multivariate Polynomial Interpolation for Scattered Data 6
1.3.1 Aitken Formula for Multivariate Interpolation 8
1.3.2 Newton Formula for Multivariate Polynomial Interpolation 8
Chapter 2 Local Methods 10
2.1 Triangulation and Function Representation on a Triangle 10
2.2 Smooth Connection Methods Based on Triangulation 17
2.2.1 Linear Interpolation and Piecewise Linear Interpolation 17
2.2.2 Nine-Parameter Cubic Method 18
2.2.3 Clough-Tocher Method 20
2.2.4 Powell-Sabin Method 21
2.3 Boole and Coons Patches 23
2.4 Subdivision Methods for Scattered Data Approximation 26
2.4.1 Chaikin Method 27
2.4.2 Doo-Sabin Method 29
2.4.3 Four-Point Method 30
2.4.4 Butterfly Algorithm 32
2.5 Sibson Interpolation or Natural Proximity 33
2.5.1 Scattered Data Interpolation with Lipschitz Constant Diminishing Property 36
2.5.2 Convergence Theorem of Sibson Interpolation 39
2.5.3 Interpolation Convergence Theorem for Interpolation with Lipschitz Constant Diminishing Property 39
2.6 Shepard Method 40
2.6.1 Shepard Interpolation with Derivative Information 42
2.6.2 Generalization of Shepard Method 43
Chapter 3 Global Methods 44
3.1 Random Function Preliminary 44
3.2 Kriging Method 48
3.2.1 Inverse of Univariate Markov Type Correlation Matrix 51
3.2.2 The Solution to Kriging Problem with Univariate Gaussian Type
Correlation Matrix 52
3.2.3 Monotonicity and Boundedness of Kriging Interpolation Operator 53
3.2.4 Condition Number of Correlation Matrix 53
3.3 Universal Kriging 54
3.4 Co-Kriging 58
3.4.1 Nugget Effect of Interpolation Operator 60
3.4.2 Application of Co-Kriging on Hermite Interpolation 61
3.5 Interpolation for Generalized Linear Functionals 62
3.6 Splines 66
3.7 Multi-Quadric Methods 73
3.8 MQ Quasi-interpolation for Higher Order Derivative Approximation 84
3.9 Stability for Derivative Approximation with FD and MQ 89
3.10 Radial Basis Functions 94
3.10.1 Radial Basis Function Interpolation 95
3.10.2 Existence of Radial Basis Function Interpolation 95
Chapter 4 Theory on Radial Basis Function Interpolation 99
4.1 Convergence and Convergence Rate 99
4.1.1 Quasi-Interpolation, Strang-Fix Condition and Shift Invariant Space 99
4.2 Convergence Results for Scattered Data Radial Basis Function Interpolation 104
4.2.1 Error Estimation 108
4.2.2 Construction of Admissible Vectors 109
4.3 Positive Definite Radial Basis Functions 112
4.4 Bodmer Theory for Radial Basis Functions 119
4.5 Radial Functions and Strang-Fix Conditions 126
Chapter 5 Other Scattered Data Interpolation Methods 139
5.1 Moving Least Squares 139
5.1.1 Least Squares 139
5.1.2 Moving Least Squares 140
5.1.3 Interpolating Moving Least Squares Methods 141
5.1.4 Divide and Conquer on General Domain 146
5.2 Convergence Analysis of Shepard Methods 147
5.2.1 Convergence Analysis for the Shepard Method 148
5.3 Implicit Splines 154
5.3.1 Other Scattered Data Interpolation Methods 157
5.4 Partition of Unity 158
5.5 R-function 159
Chapter 6 Scatter Data Interpolation for Numerical Solutions of PDEs 161
6.1 Generalized Functional Interpolations and Numerical Methods for PDEs 161
6.2 Other Multivariate Approximation Methods for PDEs 168
6.2.1 Least Squares Methods 169
6.2.2 Collocation 170
6.2.3 Galerkin Method 171
6.2.4 Golberg Method 172
Bibliography 173
定价:98.0
ISBN:9787030748553
作者:吴宗敏
版次:1
出版时间:2023-03
内容提要:
本书是应用数学与计算数学中有关…面及多元函数插值、逼近、拟合的入门书籍,从多种物理背景、原理出发,导出相应的散乱数据拟合的数学模型及计算方法,进而逐个进行深入的理论分析。书中介绍了多元散乱数据拟合的一般方法,包括多元散乱数据多项式插值、基于三角剖分的插值方法、Boole和与Coons…面、Sibson方法或自然邻近法、Shepard方法、Kriging方法、薄板样条方法、MQ拟插值法、径向基函数方法、运动最小二乘法、隐函数样条方法、R函数法等;同时还特别介绍了近年来国际上越来越热并在无网格微分方程数值解方面有诸多应用的径向基函数方法及其相关理论。
目录:
Contents
Preface to the Second Edition Preface to the First Edition
Chapter 1 Scattered Data Approximation and Multivariate Polynomial Interpolation 1
1.1 Motivation Problems 1
1.1.1 Problems from Applications 2
1.1.2 Problems from Mathematics 3
1.2 Haar Condition for Interpolation 4
1.3 Multivariate Polynomial Interpolation for Scattered Data 6
1.3.1 Aitken Formula for Multivariate Interpolation 8
1.3.2 Newton Formula for Multivariate Polynomial Interpolation 8
Chapter 2 Local Methods 10
2.1 Triangulation and Function Representation on a Triangle 10
2.2 Smooth Connection Methods Based on Triangulation 17
2.2.1 Linear Interpolation and Piecewise Linear Interpolation 17
2.2.2 Nine-Parameter Cubic Method 18
2.2.3 Clough-Tocher Method 20
2.2.4 Powell-Sabin Method 21
2.3 Boole and Coons Patches 23
2.4 Subdivision Methods for Scattered Data Approximation 26
2.4.1 Chaikin Method 27
2.4.2 Doo-Sabin Method 29
2.4.3 Four-Point Method 30
2.4.4 Butterfly Algorithm 32
2.5 Sibson Interpolation or Natural Proximity 33
2.5.1 Scattered Data Interpolation with Lipschitz Constant Diminishing Property 36
2.5.2 Convergence Theorem of Sibson Interpolation 39
2.5.3 Interpolation Convergence Theorem for Interpolation with Lipschitz Constant Diminishing Property 39
2.6 Shepard Method 40
2.6.1 Shepard Interpolation with Derivative Information 42
2.6.2 Generalization of Shepard Method 43
Chapter 3 Global Methods 44
3.1 Random Function Preliminary 44
3.2 Kriging Method 48
3.2.1 Inverse of Univariate Markov Type Correlation Matrix 51
3.2.2 The Solution to Kriging Problem with Univariate Gaussian Type
Correlation Matrix 52
3.2.3 Monotonicity and Boundedness of Kriging Interpolation Operator 53
3.2.4 Condition Number of Correlation Matrix 53
3.3 Universal Kriging 54
3.4 Co-Kriging 58
3.4.1 Nugget Effect of Interpolation Operator 60
3.4.2 Application of Co-Kriging on Hermite Interpolation 61
3.5 Interpolation for Generalized Linear Functionals 62
3.6 Splines 66
3.7 Multi-Quadric Methods 73
3.8 MQ Quasi-interpolation for Higher Order Derivative Approximation 84
3.9 Stability for Derivative Approximation with FD and MQ 89
3.10 Radial Basis Functions 94
3.10.1 Radial Basis Function Interpolation 95
3.10.2 Existence of Radial Basis Function Interpolation 95
Chapter 4 Theory on Radial Basis Function Interpolation 99
4.1 Convergence and Convergence Rate 99
4.1.1 Quasi-Interpolation, Strang-Fix Condition and Shift Invariant Space 99
4.2 Convergence Results for Scattered Data Radial Basis Function Interpolation 104
4.2.1 Error Estimation 108
4.2.2 Construction of Admissible Vectors 109
4.3 Positive Definite Radial Basis Functions 112
4.4 Bodmer Theory for Radial Basis Functions 119
4.5 Radial Functions and Strang-Fix Conditions 126
Chapter 5 Other Scattered Data Interpolation Methods 139
5.1 Moving Least Squares 139
5.1.1 Least Squares 139
5.1.2 Moving Least Squares 140
5.1.3 Interpolating Moving Least Squares Methods 141
5.1.4 Divide and Conquer on General Domain 146
5.2 Convergence Analysis of Shepard Methods 147
5.2.1 Convergence Analysis for the Shepard Method 148
5.3 Implicit Splines 154
5.3.1 Other Scattered Data Interpolation Methods 157
5.4 Partition of Unity 158
5.5 R-function 159
Chapter 6 Scatter Data Interpolation for Numerical Solutions of PDEs 161
6.1 Generalized Functional Interpolations and Numerical Methods for PDEs 161
6.2 Other Multivariate Approximation Methods for PDEs 168
6.2.1 Least Squares Methods 169
6.2.2 Collocation 170
6.2.3 Galerkin Method 171
6.2.4 Golberg Method 172
Bibliography 173
- 科学出版社旗舰店 (微信公众号认证)
- 科学出版社秉承多年来形成的“高层次、高水平、高质量”和“严肃、严密、严格”的优良传统与作风,始终坚持为科技创新服务、为传播与普及科学知识服务、为科学家和广大读者服务的宗旨。
- 扫描二维码,访问我们的微信店铺
- 随时随地的购物、客服咨询、查询订单和物流...