商品详情
机器学习是以概率论、统计学、信息论、**化理论、计算理论等为基础的计算机应用理论学科,也是人工智能、数据挖掘等领域的基础学科。《机器学习方法》全面系统地介绍了机器学习的主要方法,共分三篇。第一篇介绍监督学习的主要方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与**熵模型、支持向量机、Boosting、EM算法、隐马尔可夫模型、条件随机场等;第二篇介绍无监督学习的主要方法,包括聚类、奇异值分解、主成分分析、潜在语义分析、概率潜在语义分析、马尔可夫链蒙特卡罗法、潜在狄利克雷分配、PageRank算法等。第三篇介绍深度学习的主要方法,包括前馈神经网络、卷积神经网络、循环神经网络、序列到序列模型、预训练语言模型、生成对抗网络等。书中每章介绍一两种机器学习方法,详细叙述各个方法的模型、策略和算法。从具体例子入手,由浅入深,帮助读者直观地理解基本思路,同时从理论角度出发,给出严格的数学推导,严谨详实,让读者更好地掌握基本原理和概念。目的是使读者能学会和使用这些机器学习的基本技术。为满足读者进一步学习的需要,书中还对各个方法的要点进行了总结,给出了一些习题,并列出了主要参考文献。
《机器学习方法》是机器学习及相关课程的教学参考书,适合人工智能、数据挖掘等专业的本科生、研究生使用,也供计算机各个领域的专业研发人员参考。
- 清华大学出版社旗舰店 (微信公众号认证)
- 扫描二维码,访问我们的微信店铺
- 随时随地的购物、客服咨询、查询订单和物流...