商品详情
定价:59.0
ISBN:9787111763550
作者:耿秀丽
版次:1
出版时间:2024-10
内容提要:
本书将理论与应用结合,介绍了大数据技术、大数据分析方法以及大数据伦理规范等基础知识,可供读者入门学习使用。本书共9章,包括大数据概述、数据分析基础、回归分析、聚类算法、推荐算法、文本挖掘、启发式算法、支持向量机和神经网络。各章都附有对应案例和习题,以帮助读者理解和应用。
本书作为大数据公共通识课程的导论教材,为高校学生选修大数据课程编写,主要面向大数据应用型人才培养,也可供相关技术人员参考。
目录:
前言
第1章大数据概述
11大数据的相关概念
111大数据的背景与来源
112大数据的概念与特征
113大数据的数据类型
114《“十四五”大数据产业发展规划》与“5V”
12对科学研究和经济社会的影响
121对科学研究的影响
122对经济社会的影响
123大数据技术发展趋势
13大数据的研究现状
14大数据发展的机遇与挑战
141机遇
142挑战
15大数据分析的相关概念
151大数据分析的概念
152大数据分析与传统数据分析的比较
153大数据分析的流程
154大数据分析的基础模型
16大数据的应用
习题
参考文献
第2章数据分析基础
21数据的类型与分布
211总体和样本
212定性数据和定量数据
213截面数据和时间序列数据
22变量之间的关系
221协方差
222相关系数
23数据的可视化——基于Excel的应用
231散点图
232柱形图和折线图
233数据透视表
24数据的输入
241数据的输入方法
242数据有效性
243条件函数IF
244函数VLOOKUP
习题
第3章回归分析
31线性和非线性回归
311线性回归及其Excel中的实现
312最小二乘回归
313非线性回归及其Excel中的实现
32多元回归
321多元回归的概念
322多重共线性
323多元回归及其SPSS中的实现
324居民存款影响因素多元回归案例分析
33岭回归
331岭回归的概念
332岭回归及其在SPSS中的实现
333居民存款影响因素岭回归案例分析
34LASSO回归
341LASSO回归的概念
342LASSO回归及其SPSS中的
实现
343居民存款影响因素LASSO回归案例分析
习题
参考文献
第4章聚类算法
41聚类的原理
42K-Means聚类
421K-Means聚类算法的原理
422K-Means聚类算法在MATLAB中的实现
43K最近邻算法
431K最近邻算法的原理
432K最近邻算法在MATLAB中的实现
433鸢尾花分类案例分析
44模糊C-均值算法
441模糊C-均值算法的原理
442模糊C-均值算法在MATLAB中的实现
443用户需求聚类案例分析
习题
参考文献
第5章推荐算法
51协同过滤推荐算法
511基于用户的协同过滤算法
512基于商品的协同过滤算法
513案例分析1:二手汽车交易平台推荐
514案例分析2:著名电影推荐
52协同过滤算法常见的问题以及对策
521冷启动问题及对策
522稀疏性问题及对策
53基于内容的推荐算法
531基于结构化内容的推荐
532基于非结构化内容的推荐
54基于模型的推荐算法
55基于关联规则的推荐算法
56信息隐私与基于隐私保护的方案推荐方法
561信息隐私
562基于隐私保护的方案推荐方法
57信息污染与信任推荐算法
571信息污染
572信任推荐算法
58信息茧房
习题
参考文献
第6章文本挖掘
61文本挖掘的应用价值
62文本挖掘的流程
621文本挖掘的关键技术
622文档收集方法
623分词技术
624词的表示形式
625文本特征属性处理
63LDA主题模型
631LDA主题模型介绍
632吉布斯采样
633LDA主题模型训练过程
64基于LDA主题模型的客户需求挖掘案例分析
习题
参考文献
第7章启发式算法
71启发式算法的基本原理
711启发式函数
712搜索策略
72启发式算法的类型
721仿动物类启发式算法
722仿植物类启发式算法
73遗传算法及其实现
731遗传算法的原理
732遗传算法的步骤
733遗传算法的计算机实现
74粒子群算法及其实现
741粒子群算法的原理
742粒子群算法的步骤
743粒子群算法的计算机实现
75物流配送中心选址案例分析
习题
参考文献
第8章支持向量机
81支持向量机的原理
811支持向量机的由来
812支持向量机的发展
82支持向量机算法
821支持向量机的模型算法
822支持向量机模型优化算法
823核函数
824支持向量机算法的计算机实现
83支持向量机算法参数优化
831模糊支持向量机
832最小二乘支持向量机
833粒子群算法优化支持向量机
84算法应用及案例分析
习题
参考文献
第9章神经网络
91发展历程
92基础模型
921神经元
922网络结构
93典型神经网络
931反向传播神经网络
932卷积神经网络
933长短期记忆网络
94人工智能的中立性
95信息不公
96应用案例
961卷积用于情感分析
962LSTM用于预测:滑坡位移预测
97数字技术伦理规范
习题
参考文献
- 机械工业出版社旗舰店 (微信公众号认证)
- 扫描二维码,访问我们的微信店铺
- 随时随地的购物、客服咨询、查询订单和物流...