【中商原版】统计反思 用R和Stan例解贝叶斯方法 英文原版 Statistical Rethinking Richard McElreath
| 运费: | ¥ 0.00-16.00 |
| 库存: | 0 件 |
商品详情
统计反思 用R和Stan例解贝叶斯方法 英文原版 Statistical Rethinking Richard McElreath
基本信息
By (author) Richard McElreath
Format Hardback | 594 pages
Dimensions 178 x 254 x 33.02mm | 1,420g
Publication date 17 Mar 2020
Publisher Taylor & Francis Ltd
Imprint CRC Press
Publication City/Country London, United Kingdom
Language English
Edition New edition
Edition Statement 2nd New edition
ISBN10 036713991X
ISBN13 9780367139919
页面参数仅供参考,具体以实物为准
内容简介
本书从贝叶斯的角度介绍了广义线性分层模型,通过贝叶斯概率和大熵的基础逻辑解释模型,内容涵盖从基本的回归分析到多层模型。此外,作者还讨论了测量误差、缺失数据以及处理空间和网络自相关的高斯过程模型。
本书以R和Stan为基础,以R代码为例,提供了一个实际的统计推断的基础。适合统计、数学等相关专业的高年级本科生、研究生,以及数据挖掘的从业人士阅读。
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds your knowledge of and confidence in making inferences from data. Reflecting the need for scripting in today's model-based statistics, the book pushes you to perform step-by-step calculations that are usually automated. This unique computational approach ensures that you understand enough of the details to make reasonable choices and interpretations in your own modeling work.
The text presents causal inference and generalized linear multilevel models from a simple Bayesian perspective that builds on information theory and maximum entropy. The core material ranges from the basics of regression to advanced multilevel models. It also presents measurement error, missing data, and Gaussian process models for spatial and phylogenetic confounding.
The second edition emphasizes the directed acyclic graph (DAG) approach to causal inference, integrating DAGs into many examples. The new edition also contains new material on the design of prior distributions, splines, ordered categorical predictors, social relations models, cross-validation, importance sampling, instrumental variables, and Hamiltonian Monte Carlo. It ends with an entirely new chapter that goes beyond generalized linear modeling, showing how domain-specific scientific models can be built into statistical analyses.
Features
Integrates working code into the main text
Illustrates concepts through worked data analysis examples
Emphasizes understanding assumptions and how assumptions are reflected in code
Offers more detailed explanations of the mathematics in optional sections
Presents examples of using the dagitty R package to analyze causal graphs
Provides the rethinking R package on the author's website and on GitHub
作者简介
理查德·麦克尔里思(Richard McElreath) 著:理查德·麦克尔里思(Richard McElreath )是马克斯·普朗克进化人类学研究所人类行为、生态和文化系主任。他还是加州大学戴维斯分校的人类学教授。他的研究兴趣着眼于进化和文化人类学的交叉领域,研究人类社会学习能力的进化是如何导致人类不寻常的适应力以及庞大且多样的人类社群的。
Richard McElreath studies human evolutionary ecology and is a Director at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. He has published extensively on the mathematical theory and statistical analysis of social behavior, including his first book (with Robert Boyd), Mathematical Models of Social Evolution.
书籍目录
Preface to the Second Edition
Preface
Audience
Teaching strategy
How to use this book
Installing the rethinking R package
Acknowledgments
Chapter 1. The Golem of Prague
Statistical golems
Statistical rethinking
Tools for golem engineering
Summary
Chapter 2. Small Worlds and Large Worlds
The garden of forking data
Building a model
Components of the model
Making the model go
Summary
Practice
Chapter 3. Sampling the Imaginary
Sampling from a grid-appromate posterior
Sampling to summarize
Sampling to simulate prediction
Summary
Practice
Chapter 4. Geocentric Models
Why normal distributions are normal
A language for describing models
Gaussian model of height
Linear prediction
Curves from lines
Summary
Practice
Chapter 5. The Many Variables & The Spurious Waffles
Spurious association
Masked relationship
Categorical variables
Summary
Practice
Chapter 6. The Haunted DAG & The Causal Terror
Multicollinearity
Post-treatment bias
Collider bias
Confronting confounding
Summary
Practice
Chapter 7. Ulysses' Compass
The problem with parameters
Entropy and accuracy
Golem Taming: Regularization
Predicting predictive accuracy
Model comparison
Summary
Practice
Chapter 8. Conditional Manatees
Building an interaction
Symmetry of interactions
Continuous interactions
Summary
Practice
Chapter 9. Markov Chain Monte Carlo
Good King Markov and His island kingdom
Metropolis Algorithms
Hamiltonian Monte Carlo
Easy HMC: ulam
Care and feeding of your Markov chain
Summary
Practice
Chapter 10. Big Entropy and the Generalized Linear Model
Mamum entropy
Generalized linear models
Mamum entropy priors
Summary
Chapter 11. God Spiked the Integers
Binomial regression
Poisson regression
Multinomial and categorical models
Summary
Practice
Chapter 12. Monsters and Mixtures
Over-dispersed counts
Zero-inflated outcomes
Ordered categorical outcomes
Ordered categorical predictors
Summary
Practice
Chapter 13. Models With Memory
Example: Multilevel tadpoles
Varying effects and the underfitting/overfitting trade-off
More than one type of cluster
Divergent transitions and non-centered priors
Multilevel posterior predictions
Summary
Practice
Chapter 14. Adventures in Covariance
Varying slopes by construction
Advanced varying slopes
Instruments and causal designs
Social relations as correlated varying effects
Continuous categories and the Gaussian process
Summary
Practice
Chapter 15. Missing Data and Other Opportunities
Measurement error
Missing data
Categorical errors and discrete absences
Summary
Practice
Chapter 16. Generalized Linear Madness
Geometric people
Hidden minds and observed behavior
Ordinary differential nut cracking
Population dynamics
Summary
Practice
Chapter 17. Horoscopes
Endnotes



- 中商进口商城 (微信公众号认证)
- 中商进口商城中华商务贸易有限公司所运营的英美日韩港台原版图书销售平台,旨在向内地读者介绍、普及、引进最新最有价值的国外和港台图书和资讯。
- 扫描二维码,访问我们的微信店铺
- 随时随地的购物、客服咨询、查询订单和物流...