Excel机器学习 机器学习入门教程Excel数据挖掘深度学习强化学习数据分析人工智能神经网络计算机编程书籍
¥44.90
运费: | ¥ 0.00-20.00 |
商品详情
书名:Excel机器学习
定价:59.8
ISBN:9787115611284
作者:[美] 周红
版次:第1版
出版时间:2023-03
内容提要:
本书通过Excel示例介绍常用的机器学习算法和数据挖掘技术。许多机器学习任务的目的是找到数据中的隐藏模式。Excel能够清楚地展示机器学习建模过程的每一步及中间结果,让你不仅知其然,还知其所以然。第1章解释用Excel学习机器学习的益处。第2~12章分别介绍线性回归、k均值聚类、线性判别分析、交叉验证、logistic回归、k*近邻、朴素贝叶斯分类、决策树、关联分析、神经网络、文本挖掘。第13章总结全书内容,并为读者指出继续学习的方向。
作者简介:
周红博士是美国康涅狄格州圣约瑟夫大学计算机科学和数学教授,也曾在硅谷从事软件开发工作。作为经验丰富的教育工作者,他意识到利用Excel分步讲解机器学习方法和数据挖掘技巧的独特优势,并在实际教学过程中成功地引入Excel作为演示工具。这种教学方法颇受学生欢迎。
目录:
第 1章 Excel和数据挖掘 1
1.1 为什么选择Excel 1
1.2 Excel 预备技巧 4
1.2.1 公式 5
1.2.2 自动填充或复制 5
1.2.3 *引用 7
1.2.4 选择性粘贴和值粘贴 9
1.2.5 IF 函数 11
1.3 复习要点 17
第 2章 线性回归 18
2.1 一般性理解 18
2.2 通过Excel学习线性回归 22
2.3 通过Excel学习多元线性回归 25
2.4 复习要点 28
第3章 k均值聚类 29
3.1 一般性理解 29
3.2 通过Excel学习k均值聚类 30
3.3 复习要点 39
第4章 线性判别分析 40
4.1 一般性理解 40
4.2 规划求解 42
4.3 通过Excel学习线性判别分析 44
4.4 复习要点 53
第5章 交叉验证和ROC曲线分析 54
5.1 对交叉验证的一般性理解 54
5.2 通过Excel学习交叉验证 55
5.3 对ROC曲线分析的一般性理解 59
5.4 通过Excel学习ROC曲线分析 60
5.5 复习要点 65
第6章 logistic回归 66
6.1 一般性理解 66
6.2 通过Excel 学习logistic 回归 67
6.3 复习要点 73
第7章 k*近邻 74
7.1 一般性理解 74
7.2 通过Excel 学习k *近邻 75
7.2.1 实验1 75
7.2.2 实验2 78
7.2.3 实验3 82
7.2.4 实验4 85
7.3 复习要点 87
第8章 朴素贝叶斯分类 88
8.1 一般性理解 88
8.2 通过Excel 学习朴素贝叶斯分类 90
8.2.1 练习1 91
8.2.2 练习2 94
8.3 复习要点 100
第9章 决策树 101
9.1 一般性理解 102
9.2 通过Excel 学习决策树 105
9.2.1 开始学习 105
9.2.2 更好的方法 115
9.2.3 应用模型 118
9.3 复习要点 120
第 10章 关联分析 121
10.1 一般性理解 122
10.2 通过Excel 学习关联分析 124
10.3 复习要点 131
第 11章 人工神经网络 132
11.1 一般性理解 132
11.2 通过Excel学习人工神经网络 134
11.2.1 实验1 134
11.2.2 实验2 143
11.3 复习要点 152
第 12章 文本挖掘 153
12.1 一般性理解 153
12.2 通过Excel学习文本挖掘 155
12.3 复习要点 168
第 13章 后记 169
定价:59.8
ISBN:9787115611284
作者:[美] 周红
版次:第1版
出版时间:2023-03
内容提要:
本书通过Excel示例介绍常用的机器学习算法和数据挖掘技术。许多机器学习任务的目的是找到数据中的隐藏模式。Excel能够清楚地展示机器学习建模过程的每一步及中间结果,让你不仅知其然,还知其所以然。第1章解释用Excel学习机器学习的益处。第2~12章分别介绍线性回归、k均值聚类、线性判别分析、交叉验证、logistic回归、k*近邻、朴素贝叶斯分类、决策树、关联分析、神经网络、文本挖掘。第13章总结全书内容,并为读者指出继续学习的方向。
作者简介:
周红博士是美国康涅狄格州圣约瑟夫大学计算机科学和数学教授,也曾在硅谷从事软件开发工作。作为经验丰富的教育工作者,他意识到利用Excel分步讲解机器学习方法和数据挖掘技巧的独特优势,并在实际教学过程中成功地引入Excel作为演示工具。这种教学方法颇受学生欢迎。
目录:
第 1章 Excel和数据挖掘 1
1.1 为什么选择Excel 1
1.2 Excel 预备技巧 4
1.2.1 公式 5
1.2.2 自动填充或复制 5
1.2.3 *引用 7
1.2.4 选择性粘贴和值粘贴 9
1.2.5 IF 函数 11
1.3 复习要点 17
第 2章 线性回归 18
2.1 一般性理解 18
2.2 通过Excel学习线性回归 22
2.3 通过Excel学习多元线性回归 25
2.4 复习要点 28
第3章 k均值聚类 29
3.1 一般性理解 29
3.2 通过Excel学习k均值聚类 30
3.3 复习要点 39
第4章 线性判别分析 40
4.1 一般性理解 40
4.2 规划求解 42
4.3 通过Excel学习线性判别分析 44
4.4 复习要点 53
第5章 交叉验证和ROC曲线分析 54
5.1 对交叉验证的一般性理解 54
5.2 通过Excel学习交叉验证 55
5.3 对ROC曲线分析的一般性理解 59
5.4 通过Excel学习ROC曲线分析 60
5.5 复习要点 65
第6章 logistic回归 66
6.1 一般性理解 66
6.2 通过Excel 学习logistic 回归 67
6.3 复习要点 73
第7章 k*近邻 74
7.1 一般性理解 74
7.2 通过Excel 学习k *近邻 75
7.2.1 实验1 75
7.2.2 实验2 78
7.2.3 实验3 82
7.2.4 实验4 85
7.3 复习要点 87
第8章 朴素贝叶斯分类 88
8.1 一般性理解 88
8.2 通过Excel 学习朴素贝叶斯分类 90
8.2.1 练习1 91
8.2.2 练习2 94
8.3 复习要点 100
第9章 决策树 101
9.1 一般性理解 102
9.2 通过Excel 学习决策树 105
9.2.1 开始学习 105
9.2.2 更好的方法 115
9.2.3 应用模型 118
9.3 复习要点 120
第 10章 关联分析 121
10.1 一般性理解 122
10.2 通过Excel 学习关联分析 124
10.3 复习要点 131
第 11章 人工神经网络 132
11.1 一般性理解 132
11.2 通过Excel学习人工神经网络 134
11.2.1 实验1 134
11.2.2 实验2 143
11.3 复习要点 152
第 12章 文本挖掘 153
12.1 一般性理解 153
12.2 通过Excel学习文本挖掘 155
12.3 复习要点 168
第 13章 后记 169
- 人民邮电出版社有限公司 (微信公众号认证)
- 人民邮电出版社微店,为您提供最全面,最专业的一站式购书服务
- 扫描二维码,访问我们的微信店铺
- 随时随地的购物、客服咨询、查询订单和物流...